Results 1  10
of
84
Lowrank matrix completion using alternating minimization. ArXiv:1212.0467 eprint
, 2012
"... ar ..."
Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons
"... Nonnegative Matrix Factorization (NMF) is a dimension reduction method that has been widely used for various tasks including text mining, pattern analysis, clustering, and cancer class discovery. The mathematical formulation for NMF appears as a nonconvex optimization problem, and various types of ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
(Show Context)
Nonnegative Matrix Factorization (NMF) is a dimension reduction method that has been widely used for various tasks including text mining, pattern analysis, clustering, and cancer class discovery. The mathematical formulation for NMF appears as a nonconvex optimization problem, and various types of algorithms have been devised to solve the problem. The alternating nonnegative least squares (ANLS) framework is a block coordinate descent approach for solving NMF, which was recently shown to be theoretically sound and empirically efficient. In this paper, we present a novel algorithm for NMF based on the ANLS framework. Our new algorithm builds upon the block principal pivoting method for the nonnegativity constrained least squares problem that overcomes some limitations of active set methods. We introduce ideas to efficiently extend the block principal pivoting method within the context of NMF computation. Our algorithm inherits the convergence theory of the ANLS framework and can easily be extended to other constrained NMF formulations. Comparisons of algorithms using datasets that are from real life applications as well as those artificially generated show that the proposed new algorithm outperforms existing ones in computational speed. 1
Fast Coordinate Descent Methods with Variable Selection for Nonnegative Matrix Factorization
, 2011
"... Nonnegative Matrix Factorization (NMF) is an effective dimension reduction method for nonnegative dyadic data, and has proven to be useful in many areas, such as text mining, bioinformatics and image processing. NMF is usually formulated as a constrained nonconvex optimization problem, and many al ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
Nonnegative Matrix Factorization (NMF) is an effective dimension reduction method for nonnegative dyadic data, and has proven to be useful in many areas, such as text mining, bioinformatics and image processing. NMF is usually formulated as a constrained nonconvex optimization problem, and many algorithms have been developed for solving it. Recently, a coordinate descent method, called FastHals [3], has been proposed to solve least squares NMF and is regarded as one of the stateoftheart techniques for the problem. In this paper, we first show that FastHals has an inefficiency in that it uses a cyclic coordinate descent scheme and thus, performs unneeded descent steps on unimportant variables. We then present a variable selection scheme that uses the gradient of the objective function to arrive at a new coordinate descent method. Our new method is considerably faster in practice and we show that it has theoretical convergence guarantees. Moreover when the solution is sparse, as is often the case in real applications, our new method benefits by selecting important variables to update more often, thus resulting in higher speed. As an example, on a text dataset RCV1, our method is 7 times faster than FastHals, and more than 15 times faster when the sparsity is increased by adding an L1 penalty. We also develop new coordinate descent methods when error in NMF is measured by KLdivergence by applying the Newton method to solve the onevariable subproblems. Experiments indicate that our algorithm for minimizing the KLdivergence is faster than the Lee & Seung multiplicative rule by a factor of 10 on the CBCL image dataset.
Nonnegative factorization and the maximum edge biclique problem
, 2008
"... Nonnegative Matrix Factorization (NMF) is a data analysis technique which allows compression and interpretation of nonnegative data. NMF became widely studied after the publication of the seminal paper by Lee and Seung (Learning the Parts of Objects by Nonnegative Matrix Factorization, Nature, 1999, ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
(Show Context)
Nonnegative Matrix Factorization (NMF) is a data analysis technique which allows compression and interpretation of nonnegative data. NMF became widely studied after the publication of the seminal paper by Lee and Seung (Learning the Parts of Objects by Nonnegative Matrix Factorization, Nature, 1999, vol. 401, pp. 788–791), which introduced an algorithm based on Multiplicative Updates (MU). More recently, another class of methods called Hierarchical Alternating Least Squares (HALS) was introduced that seems to be much more efficient in practice. In this paper, we consider the problem of approximating a not necessarily nonnegative matrix with the product of two nonnegative matrices, which we refer to as Nonnegative Factorization (NF); this is the subproblem that HALS methods implicitly try to solve at each iteration. We prove that NF is NPhard for any fixed factorization rank, using a reduction to the maximum edge biclique problem. We also generalize the multiplicative updates to NF, which allows us to shed some light on the differences between the MU and HALS algorithms for NMF and give an explanation for the better performance of HALS. Finally, we link stationary points of NF with feasible solutions of the biclique problem to obtain a new type of biclique finding algorithm (based on MU) whose iterations have an algorithmic complexity proportional to the number of edges in the graph, and show that it performs better than comparable existing methods.
Phase retrieval using alternating minimization
 In NIPS
, 2013
"... Phase retrieval problems involve solving linear equations, but with missing sign (or phase, for complex numbers) information. Over the last two decades, a popular generic empirical approach to the many variants of this problem has been one of alternating minimization; i.e. alternating between estima ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
Phase retrieval problems involve solving linear equations, but with missing sign (or phase, for complex numbers) information. Over the last two decades, a popular generic empirical approach to the many variants of this problem has been one of alternating minimization; i.e. alternating between estimating the missing phase information, and the candidate solution. In this paper, we show that a simple alternating minimization algorithm geometrically converges to the solution of one such problem – finding a vector x from y,A, where y = ATx  and z  denotes a vector of elementwise magnitudes of z – under the assumption that A is Gaussian. Empirically, our algorithm performs similar to recently proposed convex techniques for this variant (which are based on “lifting ” to a convex matrix problem) in sample complexity and robustness to noise. However, our algorithm is much more efficient and can scale to large problems. Analytically, we show geometric convergence to the solution, and sample complexity that is off by log factors from obvious lower bounds. We also establish close to optimal scaling for the case when the unknown vector is sparse. Our work represents the only known theoretical guarantee for alternating minimization for any variant of phase retrieval problems in the nonconvex setting. 1
ON TENSORS, SPARSITY, AND NONNEGATIVE FACTORIZATIONS ∗
"... Abstract. Tensors have found application in a variety of fields, ranging from chemometrics to signal processing and beyond. In this paper, we consider the problem of multilinear modeling of sparse count data. Our goal is to develop a descriptive tensor factorization model of such data, along with ap ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Abstract. Tensors have found application in a variety of fields, ranging from chemometrics to signal processing and beyond. In this paper, we consider the problem of multilinear modeling of sparse count data. Our goal is to develop a descriptive tensor factorization model of such data, along with appropriate algorithms and theory. To do so, we propose that the random variation is best described via a Poisson distribution, which better describes the zeros observed in the data as compared to the typical assumption of a Gaussian distribution. Under a Poisson assumption, we fit a model to observed data using the negative loglikelihood score. We present a new algorithm for Poisson tensor factorization called CANDECOMP–PARAFAC alternating Poisson regression (CPAPR) that is based on a majorizationminimization approach. It can be shown that CPAPR is a generalization of the Lee–Seung multiplicative updates. We show how to prevent the algorithm from converging to nonKKT points and prove convergence of CPAPR under mild conditions. We also explain how to implement CPAPR for largescale sparse tensors and present results on several data sets,bothrealandsimulated.
Nonnegative Matrix Factorization: A Comprehensive Review
 IEEE TRANS. KNOWLEDGE AND DATA ENG
, 2013
"... Nonnegative Matrix Factorization (NMF), a relatively novel paradigm for dimensionality reduction, has been in the ascendant since its inception. It incorporates the nonnegativity constraint and thus obtains the partsbased representation as well as enhancing the interpretability of the issue corres ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
Nonnegative Matrix Factorization (NMF), a relatively novel paradigm for dimensionality reduction, has been in the ascendant since its inception. It incorporates the nonnegativity constraint and thus obtains the partsbased representation as well as enhancing the interpretability of the issue correspondingly. This survey paper mainly focuses on the theoretical research into NMF over the last 5 years, where the principles, basic models, properties, and algorithms of NMF along with its various modifications, extensions, and generalizations are summarized systematically. The existing NMF algorithms are divided into four categories: Basic NMF (BNMF),
Random projections for the nonnegative leastsquares problem
 LINEAR ALGEBRA AND ITS APPLICATIONS
, 2009
"... ..."
Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
, 2011
"... ..."
Using underapproximations for sparse nonnegative matrix factorization
 Pattern Recognition
, 2010
"... Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two lowrank nonnegative matrices: M ≈ V W. In this paper, we attempt to so ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two lowrank nonnegative matrices: M ≈ V W. In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonnegative Matrix Underapproximation (NMU) by adding the upper bound constraint V W ≤ M. Besides enabling a recursive procedure for NMF, these inequalities make NMU particularly wellsuited to achieve a sparse representation, improving the partbased decomposition. Although NMU is NPhard (which we prove using its equivalence with the maximum edge biclique problem in bipartite graphs), we present two approaches to solve it: a method based on convex reformulations and a method based on Lagrangian relaxation. Finally, we provide some encouraging numerical results for image processing applications.