Results 1 - 10
of
340
Logic Programming with Focusing Proofs in Linear Logic
- Journal of Logic and Computation
, 1992
"... The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is C ..."
Abstract
-
Cited by 419 (8 self)
- Add to MetaCart
The deep symmetry of Linear Logic [18] makes it suitable for providing abstract models of computation, free from implementation details which are, by nature, oriented and non symmetrical. I propose here one such model, in the area of Logic Programming, where the basic computational principle is Computation = Proof search.
A Linear Logical Framework
, 1996
"... We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science --- LICS'96 (E. Clarke editor), pp. 264--275, New Brunswick, NJ, July 27--30 1996. mal basis for a conservative extension of the LF logical framework. ..."
Abstract
-
Cited by 234 (48 self)
- Add to MetaCart
We present the linear type theory LLF as the forAppeared in the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science --- LICS'96 (E. Clarke editor), pp. 264--275, New Brunswick, NJ, July 27--30 1996. mal basis for a conservative extension of the LF logical framework. LLF combines the expressive power of dependent types with linear logic to permit the natural and concise representation of a whole new class of deductive systems, namely those dealing with state. As an example we encode a version of Mini-ML with references including its type system, its operational semantics, and a proof of type preservation. Another example is the encoding of a sequent calculus for classical linear logic and its cut elimination theorem. LLF can also be given an operational interpretation as a logic programming language under which the representations above can be used for type inference, evaluation and cut-elimination. 1 Introduction A logical framework is a formal system desig...
The Logic of Bunched Implications
- BULLETIN OF SYMBOLIC LOGIC
, 1999
"... We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication; it can be viewed as a merging of intuition ..."
Abstract
-
Cited by 224 (42 self)
- Add to MetaCart
We introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of propositional BI's proofs are given by bicartesian doubly closed categories, i.e., categories which freely combine the semantics of propositional intuitionistic logic and propositional multiplicative intuitionistic linear logic. The predicate version of BI includes, in addition to standard additive quantifiers, multiplicative (or intensional) quantifiers # new and # new which arise from observing restrictions on structural rules on the level of terms as well as propositions. We discuss computational interpretations, based on sharing, at both the propositional and predic...
Linear Objects: logical processes with built-in inheritance
, 1990
"... We present a new framework for amalgamating two successful programming paradigms: logic programming and object-oriented programming. From the former, we keep the declarative reading of programs. From the latter, we select two crucial notions: (i) the ability for objects to dynamically change their ..."
Abstract
-
Cited by 206 (6 self)
- Add to MetaCart
We present a new framework for amalgamating two successful programming paradigms: logic programming and object-oriented programming. From the former, we keep the declarative reading of programs. From the latter, we select two crucial notions: (i) the ability for objects to dynamically change their internal state during the computation; (ii) the structured representation of knowledge, generally obtained via inheritance graphs among classes of objects. We start with the approach, introduced in concurrent logic programming languages, which identifies objects with proof processes and object states with arguments occurring in the goals of a given process. This provides a clean, side-effect free account of the dynamic behavior of objects in terms of the search tree --- the only dynamic entity in logic programming languages. We integrate this view of objects with an extension of logic programming, which we call Linear Objects, based on the possibility of having multiple literals in the head of a program clause. This contains within itself the basis for a flexible form of inheritance, and maintains the constructive property of Prolog of returning definite answer substitutions as output of the proof of non-ground goals. The theoretical background for Linear Objects is Linear Logic, a logic recently introduced to provide a theoretical basis for the study of concurrency. We also show that Linear Objects can be considered a constructive restriction of full Classical Logic. We illustrate the expressive power of Linear Objects compared to Prolog by several examples from the object-oriented domain, but we also show that it can be used to provide elegant solutions for problems arising in the standard style of logic programming.
A Judgmental Reconstruction of Modal Logic
- Mathematical Structures in Computer Science
, 1999
"... this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deductio ..."
Abstract
-
Cited by 183 (42 self)
- Add to MetaCart
(Show Context)
this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for intuitionistic modal logic which does not exhibit anomalies found in other proposals. We also give a new presentation of lax logic [FM97] and find that it is already contained in modal logic, using the decomposition of the lax modality fl A as
The π-calculus as a theory in linear logic: Preliminary results
- 3rd Workshop on Extensions to Logic Programming, LNCS 660
, 1993
"... The agent expressions of the π-calculus can be translated into a theory of linear logic in such a way that the reflective and transitive closure of π-calculus (unlabeled) reduction is identified with “entailed-by”. Under this translation, parallel composition is mapped to the multiplicative disjunct ..."
Abstract
-
Cited by 113 (18 self)
- Add to MetaCart
The agent expressions of the π-calculus can be translated into a theory of linear logic in such a way that the reflective and transitive closure of π-calculus (unlabeled) reduction is identified with “entailed-by”. Under this translation, parallel composition is mapped to the multiplicative disjunct (“par”) and restriction is mapped to universal quantification. Prefixing, non-deterministic choice (+), replication (!), and the match guard are all represented using non-logical constants, which are specified using a simple form of axiom, called here a process clause. These process clauses resemble Horn clauses except that they may have multiple conclusions; that is, their heads may be the par of atomic formulas. Such multiple conclusion clauses are used to axiomatize communications among agents. Given this translation, it is nature to ask to what extent proof theory can be used to understand the meta-theory of the π-calculus. We present some preliminary results along this line for π0, the “propositional ” fragment of the π-calculus, which lacks restriction and value passing (π0 is a subset of CCS). Using ideas from proof-theory, we introduce co-agents and show that they can specify some testing equivalences for π0. If negation-as-failure-to-prove is permitted as a co-agent combinator, then testing equivalence based on co-agents yields observational equivalence for π0. This latter result follows from observing that co-agents directly represent formulas in the Hennessy-Milner modal logic. 1
A system of interaction and structure
- ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2004
"... This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, call ..."
Abstract
-
Cited by 109 (19 self)
- Add to MetaCart
This paper introduces a logical system, called BV, which extends multiplicative linear logic by a non-commutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far it is not achieved therein. It becomes very natural in a new formalism, called the calculus of structures, which is the main contribution of this work. Structures are formulae subject to certain equational laws typical of sequents. The calculus of structures is obtained by generalising the sequent calculus in such a way that a new top-down symmetry of derivations is observed, and it employs inference rules that rewrite inside structures at any depth. These properties, in addition to allowing the design of BV, yield a modular proof of cut elimination.
Reasoning with higher-order abstract syntax in a logical framework
, 2008
"... Logical frameworks based on intuitionistic or linear logics with higher-type quantification have been successfully used to give high-level, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natu ..."
Abstract
-
Cited by 101 (26 self)
- Add to MetaCart
Logical frameworks based on intuitionistic or linear logics with higher-type quantification have been successfully used to give high-level, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that evaluation preserves types. One challenge in developing a framework for such reasoning is that higher-order abstract syntax (HOAS), an elegant and declarative treatment of object-level abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a meta-logic that can be used to reason about judgments coded using HOAS; this meta-logic is an extension of a simple intuitionistic logic that admits higher-order quantification over simply typed λ-terms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of definition is a proof-theoretic device that allows certain theories to be treated as “closed ” or as defining fixed points. We explore the difficulties of formal meta-theoretic analysis of HOAS encodings by considering encodings of intuitionistic and linear logics, and formally derive the admissibility of cut for important subsets of these logics. We then propose an approach to avoid the apparent tradeoff between the benefits of higher-order abstract syntax and the ability to analyze the resulting encodings. We illustrate this approach through examples involving the simple functional and imperative programming languages PCF and PCF:=. We formally derive such properties as unicity of typing, subject reduction, determinacy of evaluation, and the equivalence of transition semantics and natural semantics presentations of evaluation.
Forum: A multiple-conclusion specification logic
- Theoretical Computer Science
, 1996
"... The theory of cut-free sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higher-order program ..."
Abstract
-
Cited by 96 (12 self)
- Add to MetaCart
(Show Context)
The theory of cut-free sequent proofs has been used to motivate and justify the design of a number of logic programming languages. Two such languages, λProlog and its linear logic refinement, Lolli [15], provide for various forms of abstraction (modules, abstract data types, and higher-order programming) but lack primitives for concurrency. The logic programming language, LO (Linear Objects) [2] provides some primitives for concurrency but lacks abstraction mechanisms. In this paper we present Forum, a logic programming presentation of all of linear logic that modularly extends λProlog, Lolli, and LO. Forum, therefore, allows specifications to incorporate both abstractions and concurrency. To illustrate the new expressive strengths of Forum, we specify in it a sequent calculus proof system and the operational semantics of a programming language that incorporates references and concurrency. We also show that the meta theory of linear logic can be used to prove properties of the objectlanguages specified in Forum.