Results 1  10
of
41
Pure bigraphs: structure and dynamics
, 2005
"... Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a c ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that behavioural analysis for Petri nets, πcalculus and mobile ambients can all be recovered in the uniform framework of bigraphs. The paper first develops the dynamic theory of an abstract structure, a wide reactive system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined in such a way that the induced bisimilarity is a congruence. This work is then specialised to Brss, whose graphical structure allows many refinements of the theory. The latter part of the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via labelled transitions. As a running example, the theory is applied to finite pure CCS, whose resulting transition system and bisimilarity are analysed in detail. The paper also mentions briefly the use of bigraphs to model pervasive computing and
Bigraphical Models of Contextaware Systems
, 2005
"... As part of ongoing work on evaluating Milner’s bigraphical reactive systems, we investigate bigraphical models of contextaware systems, a facet of ubiquitous computing. We find that naively encoding such systems in bigraphs is somewhat awkward; and we propose a more sophisticated modeling technique ..."
Abstract

Cited by 36 (15 self)
 Add to MetaCart
(Show Context)
As part of ongoing work on evaluating Milner’s bigraphical reactive systems, we investigate bigraphical models of contextaware systems, a facet of ubiquitous computing. We find that naively encoding such systems in bigraphs is somewhat awkward; and we propose a more sophisticated modeling technique, introducing Platographical models, alleviating this awkwardness. We argue that such models are useful for simulation and point out that for reasoning about such bigraphical models, the bisimilarity inherent to bigraphical reactive systems is not enough in itself; an equivalence between the bigraphical reactive systems themselves is also needed.
Transition systems, link graphs and Petri nets
, 2004
"... A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavi ..."
Abstract

Cited by 29 (5 self)
 Add to MetaCart
A framework is defined within which reactive systems can be studied formally. The framework is based upon scategories, a new variety of categories, within which reactive systems can be set up in such a way that labelled transition systems can be uniformly extracted. These lead in turn to behavioural preorders and equivalences, such as the failures preorder (treated elsewhere) and bisimilarity, which are guaranteed to be congruential. The theory rests upon the notion of relative pushout previously introduced by the authors. The framework
Spatial Logics for Bigraphs
 In Proceedings of ICALP’05, volume 3580 of LNCS
, 2005
"... Abstract. Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, picalculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical place graph for locations and a link (hyper)graph for connections. With the aim of describing bigraphical structur ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
(Show Context)
Abstract. Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, picalculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical place graph for locations and a link (hyper)graph for connections. With the aim of describing bigraphical structures, we introduce a general framework for logics whose terms represent arrows in monoidal categories. We then instantiate the framework to bigraphical structures and obtain a logic that is a natural composition of a place graph logic and a link graph logic. We explore the concepts of separation and sharing in these logics and we prove that they generalise some known spatial logics for trees, graphs and tree contexts. 1
Matching of Bigraphs
 PREPRINT OF GTVC 2006
, 2006
"... We analyze the matching problem for bigraphs. In particular, we present a sound and complete inductive characterization of matching of binding bigraphs. Our results pave the way for a provably correct matching algorithm, as needed for an implementation of bigraphical reactive systems. ..."
Abstract

Cited by 24 (12 self)
 Add to MetaCart
We analyze the matching problem for bigraphs. In particular, we present a sound and complete inductive characterization of matching of binding bigraphs. Our results pave the way for a provably correct matching algorithm, as needed for an implementation of bigraphical reactive systems.
Static bilog: a unifying language for spatial structures
 Fundamenta Informaticae
, 2007
"... Abstract. Aiming at a unified view of the logics describing spatial structures, we introduce a general framework, BiLog, whose formulae characterise monoidal categories. As a first instance of the framework we consider bigraphs, which are emerging as a an interesting (meta)model for spatial struct ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Aiming at a unified view of the logics describing spatial structures, we introduce a general framework, BiLog, whose formulae characterise monoidal categories. As a first instance of the framework we consider bigraphs, which are emerging as a an interesting (meta)model for spatial structures and distributed calculi. Since bigraphs are built orthogonally on two structures, a hierarchical place graph for locations and a link (hyper)graph for connections, we obtain a logic that is a natural composition of other two instances of BiLog: a Place Graph Logic and a Link Graph Logic. We prove that these instances generalise the spatial logics for trees, for graphs and for tree contexts. We also explore the concepts of separation and sharing in these logics. We note that both the operator * of Separation Logic and the operator  of spatial logics do not completely separate the underlying structures. These two different forms of separation can be naturally derived as instances of BiLog by using the complete separation induced by the tensor product of monoidal categories along with some form of sharing.
Bigraphical Logics for XML
, 2005
"... Bigraphs are emerging as an interesting model that can represent both the picalculus and the ambient calculus. Bigraphs are built orthogonally on two structures: a hierarchical `place' graph for locations and a `link' (hyper)graph for connections. ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Bigraphs are emerging as an interesting model that can represent both the picalculus and the ambient calculus. Bigraphs are built orthogonally on two structures: a hierarchical `place' graph for locations and a `link' (hyper)graph for connections.
Formalising Business Process Execution with Bigraphs and Reactive XML
, 2006
"... Bigraphical Reactive Systems have been proposed as a meta model for global ubiquitous computing generalising process calculi for mobility such as the picalculus and the Mobile Ambients calculus as well as graphical models for concurrency such as Petri Nets. We investigate in this paper how Bigrap ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Bigraphical Reactive Systems have been proposed as a meta model for global ubiquitous computing generalising process calculi for mobility such as the picalculus and the Mobile Ambients calculus as well as graphical models for concurrency such as Petri Nets. We investigate in this paper how Bigraphical Reactive Systems represented as Reactive XML can be used to provide a formal semantics as well as an extensible and mobile platform independent execution format for XML based business process and workflow description languages such as WSBPEL and XPDL. We propose to extend the formalism with primitives for XPath evaluation and higherorder reaction rules to allow for a very direct and succinct semantics.
A PROOFTHEORETIC APPROACH TO MATHEMATICAL KNOWLEDGE MANAGEMENT
, 2007
"... Mathematics is an area of research that is forever growing. Definitions, theorems, axioms, and proofs are integral part of every area of mathematics. The relationships between these elements bring to light the elegant abstractions that bind even the most intricate aspects of math and science. As the ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Mathematics is an area of research that is forever growing. Definitions, theorems, axioms, and proofs are integral part of every area of mathematics. The relationships between these elements bring to light the elegant abstractions that bind even the most intricate aspects of math and science. As the body of mathematics becomes larger and its relationships become richer, the organization of mathematical knowledge becomes more important and more difficult. This emerging area of research is referred to as mathematical knowledge management (MKM). The primary issues facing MKM were summarized by Buchberger, one of the organizers of the first Mathematical Knowledge Management Workshop [20]. • How do we retrieve mathematical knowledge from existing and future sources? • How do we build future mathematical knowledge bases? • How do we make the mathematical knowledge bases available to mathematicians? These questions have become particularly relevant with the growing power of and interest in automated theorem proving, using computer programs to prove