Results 1 - 10
of
926
Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software
- In Network and Distributed Systems Security Symposium
, 2005
"... Software vulnerabilities have had a devastating effect on the Internet. Worms such as CodeRed and Slammer can compromise hundreds of thousands of hosts within hours or even minutes, and cause millions of dollars of damage [32, 51]. To successfully combat these fast automatic Internet attacks, we nee ..."
Abstract
-
Cited by 647 (32 self)
- Add to MetaCart
(Show Context)
Software vulnerabilities have had a devastating effect on the Internet. Worms such as CodeRed and Slammer can compromise hundreds of thousands of hosts within hours or even minutes, and cause millions of dollars of damage [32, 51]. To successfully combat these fast automatic Internet attacks, we need fast automatic attack detection and filtering mechanisms. In this paper we propose dynamic taint analysis for automatic detection and analysis of overwrite attacks, which include most types of exploits. This approach does not need source code or special compilation for the monitored program, and hence works on commodity software. To demonstrate this idea, we have implemented TaintCheck, a mechanism that can perform dynamic taint analysis by performing binary rewriting at run time. We show that TaintCheck reliably detects most types of exploits. We found that TaintCheck produced no false positives for any of the many different programs that we tested. Further, we show how we can use a two-tiered approach to build a hybrid exploit detector that enjoys the same accuracy as TaintCheck but have extremely low performance overhead. Finally, we propose a new type of automatic signature generation—semanticanalysis based signature generation. We show that by backtracing the chain of tainted data structure rooted at the detection point, TaintCheck can automatically identify which original flow and which part of the original flow have caused the attack and identify important invariants of the payload that can be used as signatures. Semantic-analysis based signature generation can be more accurate, resilient against polymorphic worms, and robust to attacks exploiting polymorphism than the pattern-extraction based signature generation methods.
A Virtual Machine Introspection Based Architecture for Intrusion Detection
- In Proc. Network and Distributed Systems Security Symposium
, 2003
"... Today's architectures for intrusion detection force the IDS designer to make a difficult choice. If the IDS resides on the host, it has an excellent view of what is happening in that host's software, but is highly susceptible to attack. On the other hand, if the IDS resides in the network, ..."
Abstract
-
Cited by 423 (5 self)
- Add to MetaCart
(Show Context)
Today's architectures for intrusion detection force the IDS designer to make a difficult choice. If the IDS resides on the host, it has an excellent view of what is happening in that host's software, but is highly susceptible to attack. On the other hand, if the IDS resides in the network, it is more resistant to attack, but has a poor view of what is happening inside the host, making it more susceptible to evasion. In this paper we present an architecture that retains the visibility of a host-based IDS, but pulls the IDS outside of the host for greater attack resistance. We achieve this through the use of a virtual machine monitor. Using this approach allows us to isolate the IDS from the monitored host but still retain excellent visibility into the host's state. The VMM also offers us the unique ability to completely mediate interactions between the host software and the underlying hardware. We present a detailed study of our architecture, including Livewire, a prototype implementation. We demonstrate Livewire by implementing a suite of simple intrusion detection policies and using them to detect real attacks.
Autograph: Toward automated, distributed worm signature detection
- In Proceedings of the 13th Usenix Security Symposium
, 2004
"... Today’s Internet intrusion detection systems (IDSes) monitor edge networks ’ DMZs to identify and/or filter malicious flows. While an IDS helps protect the hosts on its local edge network from compromise and denial of service, it cannot alone effectively intervene to halt and reverse the spreading o ..."
Abstract
-
Cited by 362 (3 self)
- Add to MetaCart
(Show Context)
Today’s Internet intrusion detection systems (IDSes) monitor edge networks ’ DMZs to identify and/or filter malicious flows. While an IDS helps protect the hosts on its local edge network from compromise and denial of service, it cannot alone effectively intervene to halt and reverse the spreading of novel Internet worms. Generation of the worm signatures required by an IDS—the byte patterns sought in monitored traffic to identify worms—today entails non-trivial human labor, and thus significant delay: as network operators detect anomalous behavior, they communicate with one another and manually study packet traces to produce a worm signature. Yet intervention must occur early in an epidemic to halt a worm’s spread. In this paper, we describe Autograph, a system that automatically generates signatures for novel Internet worms that propagate using TCP transport. Autograph generates signatures by analyzing the prevalence of portions of flow payloads, and thus uses no knowledge of protocol semantics above the TCP level. It is designed to produce signatures that exhibit high sensitivity (high true positives) and high specificity (low false positives); our evaluation of the system on real DMZ traces validates that it achieves these goals. We extend Autograph to share port scan reports among distributed monitor instances, and using trace-driven simulation, demonstrate the value of this technique in speeding the generation of signatures for novel worms. Our results elucidate the fundamental trade-off between early generation of signatures for novel worms and the specificity of these generated signatures. 1
Code-Red: a case study on the spread and victims of an Internet worm
, 2002
"... On July 19, 2001, more than 359,000 computers connected to the Internet were infected with the CodeRed (CRv2) worm in less than 14 hours. The cost of this epidemic, including subsequent strains of Code-Red, is estimated to be in excess of $2.6 billion. Despite the global damage caused by this attack ..."
Abstract
-
Cited by 337 (6 self)
- Add to MetaCart
On July 19, 2001, more than 359,000 computers connected to the Internet were infected with the CodeRed (CRv2) worm in less than 14 hours. The cost of this epidemic, including subsequent strains of Code-Red, is estimated to be in excess of $2.6 billion. Despite the global damage caused by this attack, there have been few serious attempts to characterize the spread of the worm, partly due to the challenge of collecting global information about worms. Using a technique that enables global detection of worm spread, we collected and analyzed data over a period of 45 days beginning July 2nd, 2001 to determine the characteristics of the spread of Code-Red throughout the Internet. In this paper, we describe the methodology we use to trace the spread of Code-Red, and then describe the results of our trace analyses. We first detail the spread of the Code-Red and CodeRedII worms in terms of infection and deactivation rates. Even without being optimized for spread of infection, Code-Red infection rates peaked at over 2,000 hosts per minute. We then examine the properties of the infected host population, including geographic location, weekly and diurnal time effects, top-level domains, and ISPs. We demonstrate that the worm was an international event, infection activity exhibited time-of-day effects, and found that, although most attention focused on large corporations, the Code-Red worm primarily preyed upon home and small business users. We also qualified the effects of DHCP on measurements of infected hosts and determined that IP addresses are not an accurate measure of the spread of a worm on timescales longer than 24 hours. Finally, the experience of the CodeRed worm demonstrates that wide-spread vulnerabilities in Internet hosts can be exploited quickly and dramatically, and t...
Improving Host Security with System Call Policies
- In Proceedings of the 12th Usenix Security Symposium
, 2002
"... We introduce a system that eliminates the need to run programs in privileged process contexts. Using our system, programs run unprivileged but may execute certain operations with elevated privileges as determined by a configurable policy eliminating the need for suid or sgid binaries. We present the ..."
Abstract
-
Cited by 330 (0 self)
- Add to MetaCart
(Show Context)
We introduce a system that eliminates the need to run programs in privileged process contexts. Using our system, programs run unprivileged but may execute certain operations with elevated privileges as determined by a configurable policy eliminating the need for suid or sgid binaries. We present the design and analysis of the "Systrace" facility which supports fine grained process confinement, intrusion detection, auditing and privilege elevation. It also facilitates the often difficult process of policy generation. With Systrace, it is possible to generate policies automatically in a training session or generate them interactively during program execution. The policies describe the desired behavior of services or user applications on a system call level and are enforced to prevent operations that are not explicitly permitted. We show that Systrace is efficient and does not impose significant performance penalties.
Automated worm fingerprinting
- In OSDI
, 2004
"... Network worms are a clear and growing threat to the security of today’s Internet-connected hosts and networks. The combination of the Internet’s unrestricted connectivity and widespread software homogeneity allows network pathogens to exploit tremendous parallelism in their propagation. In fact, mod ..."
Abstract
-
Cited by 317 (9 self)
- Add to MetaCart
(Show Context)
Network worms are a clear and growing threat to the security of today’s Internet-connected hosts and networks. The combination of the Internet’s unrestricted connectivity and widespread software homogeneity allows network pathogens to exploit tremendous parallelism in their propagation. In fact, modern worms can spread so quickly, and so widely, that no human-mediated reaction can hope to contain an outbreak. In this paper, we propose an automated approach for quickly detecting previously unknown worms and viruses based on two key behavioral characteristics – a common exploit sequence together with a range of unique sources generating infections and destinations being targeted. More importantly, our approach – called “content sifting ” – automatically generates precise signatures that can then be used to filter or moderate the spread of the worm elsewhere in the network. Using a combination of existing and novel algorithms we have developed a scalable content sifting implementation with low memory and CPU requirements. Over months of active use at UCSD, our Earlybird prototype system has automatically detected and generated signatures for all pathogens known to be active on our network as well as for several new worms and viruses which were unknown at the time our system identified them. Our initial experience suggests that, for a wide range of network pathogens, it may be practical to construct fully automated defenses – even against so-called “zero-day” epidemics. 1
Fast Portscan Detection Using Sequential Hypothesis Testing
- IN PROCEEDINGS OF THE IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2004
"... Attackers routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. Network Intrusion Detection Systems (NIDS) attempt to detect such behavior and flag these portscanners as malicious. An important need in such systems is prompt response: the sooner a N ..."
Abstract
-
Cited by 305 (12 self)
- Add to MetaCart
Attackers routinely perform random "portscans" of IP addresses to find vulnerable servers to compromise. Network Intrusion Detection Systems (NIDS) attempt to detect such behavior and flag these portscanners as malicious. An important need in such systems is prompt response: the sooner a NIDS detects malice, the lower the resulting damage. At the same time, a NIDS should not falsely implicate benign remote hosts as malicious. Balancing the
Vigilante: End-to-End Containment of Internet Worm Epidemics
, 2008
"... Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. ..."
Abstract
-
Cited by 304 (6 self)
- Add to MetaCart
(Show Context)
Worm containment must be automatic because worms can spread too fast for humans to respond. Recent work proposed network-level techniques to automate worm containment; these techniques have limitations because there is no information about the vulnerabilities exploited by worms at the network level. We propose Vigilante, a new end-to-end architecture to contain worms automatically that addresses these limitations. In Vigilante, hosts detect worms by instrumenting vulnerable programs to analyze infection attempts. We introduce dynamic data-flow analysis: a broad-coverage host-based algorithm that can detect unknown worms by tracking the flow of data from network messages and disallowing unsafe uses of this data. We also show how to integrate other host-based detection mechanisms into the Vigilante architecture. Upon detection, hosts generate self-certifying alerts (SCAs), a new type of security alert that can be inexpensively verified by any vulnerable host. Using SCAs, hosts can cooperate to contain an outbreak, without having to trust each other. Vigilante broadcasts SCAs over an overlay network that propagates alerts rapidly and resiliently. Hosts receiving an SCA protect themselves by generating filters with vulnerability condition slicing: an algorithm that performs dynamic analysis of the vulnerable program to identify control-flow conditions that lead
Polygraph: Automatically generating signatures for polymorphic worms
- In Proceedings of the IEEE Symposium on Security and Privacy
, 2005
"... It is widely believed that content-signature-based intrusion detection systems (IDSes) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match poly ..."
Abstract
-
Cited by 275 (17 self)
- Add to MetaCart
(Show Context)
It is widely believed that content-signature-based intrusion detection systems (IDSes) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content substrings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives. 1.
Anomalous payload-based network intrusion detection, in: RAID Symposium,
, 2004
"... Abstract. We present a payload-based anomaly detector, we call PAYL, for intrusion detection. PAYL models the normal application payload of network traffic in a fully automatic, unsupervised and very effecient fashion. We first compute during a training phase a profile byte frequency distribution a ..."
Abstract
-
Cited by 257 (14 self)
- Add to MetaCart
Abstract. We present a payload-based anomaly detector, we call PAYL, for intrusion detection. PAYL models the normal application payload of network traffic in a fully automatic, unsupervised and very effecient fashion. We first compute during a training phase a profile byte frequency distribution and their standard deviation of the application payload flowing to a single host and port. We then use Mahalanobis distance during the detection phase to calculate the similarity of new data against the pre-computed profile. The detector compares this measure against a threshold and generates an alert when the distance of the new input exceeds this threshold. We demonstrate the surprising effectiveness of the method on the 1999 DARPA IDS dataset and a live dataset we collected on the Columbia CS department network. In once case nearly 100% accuracy is achieved with 0.1% false positive rate for port 80 traffic.