Results 1 - 10
of
347
The LAMA planner: guiding cost-based anytime planning with landmarks.
- Journal Artificial Intelligence Research (JAIR)
, 2010
"... Abstract LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-dom ..."
Abstract
-
Cited by 141 (5 self)
- Add to MetaCart
(Show Context)
Abstract LAMA is a classical planning system based on heuristic forward search. Its core feature is the use of a pseudo-heuristic derived from landmarks, propositional formulas that must be true in every solution of a planning task. LAMA builds on the Fast Downward planning system, using finite-domain rather than binary state variables and multi-heuristic search. The latter is employed to combine the landmark heuristic with a variant of the well-known FF heuristic. Both heuristics are cost-sensitive, focusing on high-quality solutions in the case where actions have non-uniform cost. A weighted A * search is used with iteratively decreasing weights, so that the planner continues to search for plans of better quality until the search is terminated. LAMA showed best performance among all planners in the sequential satisficing track of the International Planning Competition 2008. In this paper we present the system in detail and investigate which features of LAMA are crucial for its performance. We present individual results for some of the domains used at the competition, demonstrating good and bad cases for the techniques implemented in LAMA. Overall, we find that using landmarks improves performance, whereas the incorporation of action costs into the heuristic estimators proves not to be beneficial. We show that in some domains a search that ignores cost solves far more problems, raising the question of how to deal with action costs more effectively in the future. The iterated weighted A * search greatly improves results, and shows synergy effects with the use of landmarks.
Flexible abstraction heuristics for optimal sequential planning
- In Proc. ICAPS 2007
, 2007
"... We describe an approach to deriving consistent heuristics for automated planning, based on explicit search in abstract state spaces. The key to managing complexity is interleaving composition of abstractions over different sets of state variables with abstraction of the partial composites. The appro ..."
Abstract
-
Cited by 95 (26 self)
- Add to MetaCart
We describe an approach to deriving consistent heuristics for automated planning, based on explicit search in abstract state spaces. The key to managing complexity is interleaving composition of abstractions over different sets of state variables with abstraction of the partial composites. The approach is very general and can be instantiated in many different ways by following different abstraction strategies. In particular, the technique subsumes planning with pattern databases as a special case. Moreover, with suitable abstraction strategies it is possible to derive perfect heuristics in a number of classical benchmark domains, thus allowing their optimal solution in polynomial time. To evaluate the practical usefulness of the approach, we perform empirical experiments with one particular abstraction strategy. Our results show that the approach is competitive with the state of the art.
Landmarks revisited
- in: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-2008
, 2008
"... Landmarks for propositional planning tasks are variable assignments that must occur at some point in every solution plan. We propose a novel approach for using landmarks in planning by deriving a pseudo-heuristic and combining it with other heuristics in a search framework. The incorporation of land ..."
Abstract
-
Cited by 89 (15 self)
- Add to MetaCart
Landmarks for propositional planning tasks are variable assignments that must occur at some point in every solution plan. We propose a novel approach for using landmarks in planning by deriving a pseudo-heuristic and combining it with other heuristics in a search framework. The incorporation of landmark information is shown to improve success rates and solution qualities of a heuristic planner. We furthermore show how additional landmarks and orderings can be found using the information present in multi-valued state variable representations of planning tasks. Compared to previously published approaches, our landmark extraction algorithm provides stronger guarantees of correctness for the generated landmark orderings, and our novel use of landmarks during search solves more planning tasks and delivers considerably better solutions.
Concise finite-domain representations for PDDL planning tasks
, 2009
"... We introduce an efficient method for translating planning tasks specified in the standard PDDL formalism into a concise grounded representation that uses finite-domain state variables instead of the straight-forward propositional encoding. Translation is performed in four stages. Firstly, we transfo ..."
Abstract
-
Cited by 63 (13 self)
- Add to MetaCart
(Show Context)
We introduce an efficient method for translating planning tasks specified in the standard PDDL formalism into a concise grounded representation that uses finite-domain state variables instead of the straight-forward propositional encoding. Translation is performed in four stages. Firstly, we transform the input task into an equivalent normal form expressed in a restricted fragment of PDDL. Secondly, we synthesize invariants of the planning task that identify groups of mutually exclusive propositions which can be represented by a single finite-domain variable. Thirdly, we perform an efficient relaxed reachability analysis using logic programming techniques to obtain a grounded representation of the input. Finally, we combine the results of the third and fourth stage to generate the final grounded finite-domain representation. The presented approach has originally been implemented as part of the Fast Downward planning system for the 4th International Planning Competition (IPC4). Since then, it has been used in a number of other contexts with considerable success, and the use of concise finite-domain representations has become a common feature of state-of-the-art planners.
Unifying the causal graph and additive heuristics
- Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS
, 2008
"... Many current heuristics for domain-independent planning, such as Bonet and Geffner’s additive heuristic and Hoffmann and Nebel’s FF heuristic, are based on delete relaxations. They estimate the goal distance of a search state by approximating the solution cost in a relaxed task where negative conseq ..."
Abstract
-
Cited by 56 (14 self)
- Add to MetaCart
(Show Context)
Many current heuristics for domain-independent planning, such as Bonet and Geffner’s additive heuristic and Hoffmann and Nebel’s FF heuristic, are based on delete relaxations. They estimate the goal distance of a search state by approximating the solution cost in a relaxed task where negative consequences of operator applications are ignored. Helmert’s causal graph heuristic, on the other hand, approximates goal distances by solving a hierarchy of “local ” planning problems that only involve a single state variable and the variables it depends on directly. Superficially, the causal graph heuristic appears quite unrelated to heuristics based on delete relaxation. In this contribution, we show that the opposite is true. Using a novel, declarative formulation of the causal graph heuristic, we show that the causal graph heuristic is the additive heuristic plus context. Unlike the original heuristic, our formulation does not require the causal graph to be acyclic, and thus leads to a proper generalization of both the causal graph and additive heuristics. Empirical results show that the new heuristic is significantly better informed than both Helmert’s original causal graph heuristic and the additive heuristic and outperforms them across a wide range of standard benchmarks.
Deterministic planning in the fifth international planning competition: Pddl3 and experimental evaluation of the planners
- ARTIFICIAL INTELLIGENCE
, 2009
"... The international planning competition (IPC) is an important driver for planning research. The general goals of the IPC include pushing the state of the art in planning technology by posing new scientific challenges, encouraging direct comparison of planning systems and techniques, developing and im ..."
Abstract
-
Cited by 52 (4 self)
- Add to MetaCart
(Show Context)
The international planning competition (IPC) is an important driver for planning research. The general goals of the IPC include pushing the state of the art in planning technology by posing new scientific challenges, encouraging direct comparison of planning systems and techniques, developing and improving a common planning domain definition language, and designing new planning domains and problems for the research community. This paper focuses on the deterministic part of the fifth international planning competition (IPC5), presenting the language and benchmark domains that we developed for the competition, as well as a detailed experimental evaluation of the deterministic planners that entered IPC5, which helps to understand the state of the art in the field. We introduce an extension of PDDL, called PDDL3, allowing the user to express strong and soft constraints about the structure of the desired plans, as well as strong and soft problem goals. We discuss the expressive power of the new language focusing on the restricted version that was used in IPC5, for which we give some basic results about its compilability into PDDL2. Moreover, we study the relative performance of the IPC5 planners in terms of solved problems, CPU time, and plan quality; we analyse their behaviour with respect to the winners of the previous competition; and we
The Joy of Forgetting: Faster Anytime Search via Restarting
"... {jtd7, ruml} at cs.unh.edu Anytime search algorithms solve optimisation problems by quickly finding a usually suboptimal solution and then finding improved solutions when given additional time. To deliver a solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate ..."
Abstract
-
Cited by 47 (15 self)
- Add to MetaCart
{jtd7, ruml} at cs.unh.edu Anytime search algorithms solve optimisation problems by quickly finding a usually suboptimal solution and then finding improved solutions when given additional time. To deliver a solution quickly, they are typically greedy with respect to the heuristic cost-to-go estimate h. In this paper, we first show that this low-h bias can cause poor performance if the heuristic is inaccurate. Building on this observation, we then present a new anytime approach that restarts the search from the initial state every time a new solution is found. We demonstrate the utility of our method via experiments in PDDL planning as well as other domains. We show that it is particularly useful for hard optimisation problems like planning where heuristics may be quite inaccurate and inadmissible, and where the greedy solution makes early mistakes.
Monte-Carlo Exploration for Deterministic Planning
, 2009
"... Search methods based on Monte-Carlo simulation have recently led to breakthrough performance improvements in difficult game-playing domains such as Go and General Game Playing. Monte-Carlo Random Walk (MRW) planning applies Monte-Carlo ideas to deterministic classical planning. In the forward chaini ..."
Abstract
-
Cited by 45 (15 self)
- Add to MetaCart
Search methods based on Monte-Carlo simulation have recently led to breakthrough performance improvements in difficult game-playing domains such as Go and General Game Playing. Monte-Carlo Random Walk (MRW) planning applies Monte-Carlo ideas to deterministic classical planning. In the forward chaining planner ARVAND, Monte-Carlo random walks are used to explore the local neighborhood of a search state for action selection. In contrast to the stochastic local search approach used in the recent planner Identidem, random walks yield a larger and unbiased sample of the search neighborhood, and require state evaluations only at the endpoints of each walk. On IPC-4 competition problems, the performance of ARVAND is competitive with state of the art systems.
Preferred Operators and Deferred Evaluation in Satisficing Planning
"... Heuristic forward search is the dominant approach to satisficing planning to date. Most successful planning systems, however, go beyond plain heuristic search by employing various search-enhancement techniques. One example is the use of helpful actions or preferred operators, providing information w ..."
Abstract
-
Cited by 41 (13 self)
- Add to MetaCart
(Show Context)
Heuristic forward search is the dominant approach to satisficing planning to date. Most successful planning systems, however, go beyond plain heuristic search by employing various search-enhancement techniques. One example is the use of helpful actions or preferred operators, providing information which may complement heuristic values. A second example is deferred heuristic evaluation, a search variant which can reduce the number of costly node evaluations. Despite the wide-spread use of these search-enhancement techniques however, we note that few results have been published examining their usefulness. In particular, while various ways of using, and possibly combining, these techniques are conceivable, no work to date has studied the performance of such variations. In this paper, we address this gap by examining the use of preferred operators and deferred evaluation in a variety of settings within best-first search. In particular, our findings are consistent with and help explain the good performance of the winners of the satisficing tracks at IPC 2004 and 2008.