Results 1 - 10
of
450
Space-time Interest Points
- IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract
-
Cited by 819 (21 self)
- Add to MetaCart
(Show Context)
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can be used for a compact representation of video data as well as for its interpretation.. To detect
Pictorial Structures for Object Recognition
- IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract
-
Cited by 816 (15 self)
- Add to MetaCart
(Show Context)
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by spring-like connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.
Real-time human pose recognition in parts from single depth images
- IN CVPR
, 2011
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract
-
Cited by 568 (17 self)
- Add to MetaCart
(Show Context)
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem. Our large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc. Finally we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.
A Survey of Computer Vision-Based Human Motion Capture
- Computer Vision and Image Understanding
, 2001
"... A comprehensive survey of computer vision-based human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each ..."
Abstract
-
Cited by 515 (14 self)
- Add to MetaCart
A comprehensive survey of computer vision-based human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each process is discussed and divided into subprocesses and/or categories of methods to provide a reference to describe and compare the more than 130 publications covered by the survey. References are included throughout the paper to exemplify important issues and their relations to the various methods. A number of general assumptions used in this research field are identified and the character of these assumptions indicates that the research field is still in an early stage of development. To evaluate the state of the art, the major application areas are identified and performances are analyzed in light of the methods
Articulated body motion capture by annealed particle filtering
- In IEEE Conf. on Computer Vision and Pattern Recognition
, 2000
"... The main challenge in articulated body motion tracking is the large number of degrees of freedom (around 30) to be recovered. Search algorithms, either deterministic or stochastic, that search such a space without constraint, fall foul of exponential computational complexity. One approach is to intr ..."
Abstract
-
Cited by 494 (4 self)
- Add to MetaCart
(Show Context)
The main challenge in articulated body motion tracking is the large number of degrees of freedom (around 30) to be recovered. Search algorithms, either deterministic or stochastic, that search such a space without constraint, fall foul of exponential computational complexity. One approach is to introduce constraints — either labelling using markers or colour coding, prior assumptions about motion trajectories or view restrictions. Another is to relax constraints arising from articulation, and track limbs as if their motions were independent. In contrast, here we aim for general tracking without special preparation of subjects or restrictive assumptions. The principal contribution of this paper is the development of a modified particle filter for search in high dimensional configuration spaces. It uses a continuation principle, based on annealing, to introduce the influence of narrow peaks in the fitness function, gradually. The new algorithm, termed annealed particle filtering, is shown to be capable of recovering full articulated body motion efficiently. 1.
Stochastic Tracking of 3D Human Figures Using 2D Image Motion
- In European Conference on Computer Vision
, 2000
"... . A probabilistic method for tracking 3D articulated human gures in monocular image sequences is presented. Within a Bayesian framework, we de ne a generative model of image appearance, a robust likelihood function based on image graylevel dierences, and a prior probability distribution over pose an ..."
Abstract
-
Cited by 383 (33 self)
- Add to MetaCart
(Show Context)
. A probabilistic method for tracking 3D articulated human gures in monocular image sequences is presented. Within a Bayesian framework, we de ne a generative model of image appearance, a robust likelihood function based on image graylevel dierences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior probability distribution over model parameters is represented using a discrete set of samples and is propagated over time using particle ltering. The approach extends previous work on parameterized optical ow estimation to exploit a complex 3D articulated motion model. It also extends previous work on human motion tracking by including a perspective camera model, by modeling limb self occlusion, and by recovering 3D motion from a monocular sequence. The explicit posterior probability distribution represents ambiguities due to image matching, model singularities, and perspective projection. The method relies only on a...
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion
, 2006
"... While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture s ..."
Abstract
-
Cited by 266 (15 self)
- Add to MetaCart
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HUMANEVA datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40, 000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.
Recent Developments in Human Motion Analysis
"... Visual analysis of human motion is currently one of the most active research topics in computer vision. This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality, smart surveillance, perceptual interface, etc. Human motion analysis concerns the ..."
Abstract
-
Cited by 264 (3 self)
- Add to MetaCart
Visual analysis of human motion is currently one of the most active research topics in computer vision. This strong interest is driven by a wide spectrum of promising applications in many areas such as virtual reality, smart surveillance, perceptual interface, etc. Human motion analysis concerns the detection, tracking and recognition of people, and more generally, the understanding of human behaviors, from image sequences involving humans. This paper provides a comprehensive survey of research on computer vision based human motion analysis. The emphasis is on three major issues involved in a general human motion analysis system, namely human detection, tracking and activity understanding. Various methods for each issue are discussed in order to examine the state of the art. Finally, some research challenges and future directions are discussed.
Recovering 3D Human Pose from Monocular Images
"... We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descrip ..."
Abstract
-
Cited by 261 (0 self)
- Add to MetaCart
We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. We evaluate several different regression methods: ridge regression, Relevance Vector Machine (RVM) regression and Support Vector Machine (SVM) regression over both linear and kernel bases. The RVMs provide much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. Loss of depth and limb labelling information often makes the recovery of 3D pose from single silhouettes ambiguous. We propose two solutions to this: the first embeds the method in a tracking framework, using dynamics from the previous state estimate to disambiguate the pose; the second uses a mixture of regressors framework to return multiple solutions for each silhouette. We show that the resulting system tracks long sequences stably, and is also capable of accurately reconstructing 3D human pose from single images, giving multiple possible solutions in ambiguous cases. For realism and good generalization over a wide range of viewpoints, we train the regressors on images resynthesized from real human motion capture data. The method is demonstrated on a 54-parameter full body pose model, both quantitatively on independent but similar test data, and qualitatively on real image sequences. Mean angular errors of 4–5 degrees are obtained — a factor of 3 better than the current state of the art for the much simpler upper body problem.