Results 1 - 10
of
1,503
Kernel-Based Object Tracking
, 2003
"... A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity fu ..."
Abstract
-
Cited by 900 (4 self)
- Add to MetaCart
(Show Context)
A new approach toward target representation and localization, the central component in visual tracking of non-rigid objects, is proposed. The feature histogram based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking. Keywords: non-rigid object tracking; target localization and representation; spatially-smooth similarity function; Bhattacharyya coefficient; face tracking. 1
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract
-
Cited by 839 (85 self)
- Add to MetaCart
(Show Context)
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.
Space-time Interest Points
- IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract
-
Cited by 819 (21 self)
- Add to MetaCart
(Show Context)
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatio-temporal domain and show how the resulting features often reflect interesting events that can be used for a compact representation of video data as well as for its interpretation.. To detect
Real-Time Tracking of Non-Rigid Objects using Mean Shift
- IEEE CVPR 2000
, 2000
"... A new method for real-time tracking of non-rigid objects seen from a moving camera isproposed. The central computational module is based on the mean shift iterations and nds the most probable target position in the current frame. The dissimilarity between the target model (its color distribution) an ..."
Abstract
-
Cited by 815 (19 self)
- Add to MetaCart
(Show Context)
A new method for real-time tracking of non-rigid objects seen from a moving camera isproposed. The central computational module is based on the mean shift iterations and nds the most probable target position in the current frame. The dissimilarity between the target model (its color distribution) and the target candidates is expressed by a metric derived from the Bhattacharyya coefficient. The theoretical analysis of the approach shows that it relates to the Bayesian framework while providing a practical, fast and efficient solution. The capability of the tracker to handle in real-time partial occlusions, significant clutter, and target scale variations, is demonstrated for several image sequences.
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
A Survey of Computer Vision-Based Human Motion Capture
- Computer Vision and Image Understanding
, 2001
"... A comprehensive survey of computer vision-based human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each ..."
Abstract
-
Cited by 515 (14 self)
- Add to MetaCart
A comprehensive survey of computer vision-based human motion capture literature from the past two decades is presented. The focus is on a general overview based on a taxonomy of system functionalities, broken down into four processes: initialization, tracking, pose estimation, and recognition. Each process is discussed and divided into subprocesses and/or categories of methods to provide a reference to describe and compare the more than 130 publications covered by the survey. References are included throughout the paper to exemplify important issues and their relations to the various methods. A number of general assumptions used in this research field are identified and the character of these assumptions indicates that the research field is still in an early stage of development. To evaluate the state of the art, the major application areas are identified and performances are analyzed in light of the methods
On-line selection of discriminative tracking features
, 2003
"... This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the ..."
Abstract
-
Cited by 356 (5 self)
- Add to MetaCart
(Show Context)
This paper presents an on-line feature selection mechanism for evaluating multiple features while tracking and adjusting the set of features used to improve tracking performance. Our hypothesis is that the features that best discriminate between object and background are also best for track-ing the object. Given a set of seed features, we compute log likelihood ratios of class conditional sample densities from object and background to form a new set of candidate features tailored to the local object/background discrimination task. The two-class variance ratio is used to rank these new features according to how well they separate sample distributions of object and background pixels. This feature evaluation mechanism is embedded in a mean-shift tracking system that adap-tively selects the top-ranked discriminative features for tracking. Examples are presented that demonstrate how this method adapts to changing appearances of both tracked object and scene background. We note susceptibility of the variance ratio feature selection method to distraction by spatially correlated background clutter, and develop an additional approach that seeks to minimize the likelihood of distraction.
A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping
- In IEEE International Conference on Robotics and Automation
, 2000
"... We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scan-matching for mapping, paired with a sample-based probabilistic method for localization. Compact 3D maps are generated using ..."
Abstract
-
Cited by 318 (36 self)
- Add to MetaCart
(Show Context)
We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scan-matching for mapping, paired with a sample-based probabilistic method for localization. Compact 3D maps are generated using a multi-resolution approach adopted from the computer graphics literature, fed by data from a dual laser system. Our approach builds 3D maps of large, cyclic environments in real-time. It is remarkably robust. Experimental results illustrate that accurate maps of large, cyclic environments can be generated even in the absence of any odometric data. 1
A Boosted Particle Filter: Multitarget Detection and Tracking
- In ECCV
, 2004
"... The problem of tracking a varying number of non-rigid objects has two major di#culties. First, the observation models and target distributions can be highly non-linear and non-Gaussian. Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambig ..."
Abstract
-
Cited by 308 (7 self)
- Add to MetaCart
(Show Context)
The problem of tracking a varying number of non-rigid objects has two major di#culties. First, the observation models and target distributions can be highly non-linear and non-Gaussian. Second, the presence of a large, varying number of objects creates complex interactions with overlap and ambiguities. To surmount these di#culties, we introduce a vision system that is capable of learning, detecting and tracking the objects of interest. The system is demonstrated in the context of tracking hockey players using video sequences. Our approach combines the strengths of two successful algorithms: mixture particle filters and Adaboost. The mixture particle filter [17] is ideally suited to multi-target tracking as it assigns a mixture component to each player. The crucial design issues in mixture particle filters are the choice of the proposal distribution and the treatment of objects leaving and entering the scene.
Recovering 3D Human Pose from Monocular Images
"... We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descrip ..."
Abstract
-
Cited by 261 (0 self)
- Add to MetaCart
We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogram-of-shape-contexts descriptors. We evaluate several different regression methods: ridge regression, Relevance Vector Machine (RVM) regression and Support Vector Machine (SVM) regression over both linear and kernel bases. The RVMs provide much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. Loss of depth and limb labelling information often makes the recovery of 3D pose from single silhouettes ambiguous. We propose two solutions to this: the first embeds the method in a tracking framework, using dynamics from the previous state estimate to disambiguate the pose; the second uses a mixture of regressors framework to return multiple solutions for each silhouette. We show that the resulting system tracks long sequences stably, and is also capable of accurately reconstructing 3D human pose from single images, giving multiple possible solutions in ambiguous cases. For realism and good generalization over a wide range of viewpoints, we train the regressors on images resynthesized from real human motion capture data. The method is demonstrated on a 54-parameter full body pose model, both quantitatively on independent but similar test data, and qualitatively on real image sequences. Mean angular errors of 4–5 degrees are obtained — a factor of 3 better than the current state of the art for the much simpler upper body problem.