Results 1 -
2 of
2
Adaptive cleaning for rfid data streams
, 2006
"... ABSTRACT To compensate for the inherent unreliability of RFID data streams, most RFID middleware systems employ a "smoothing filter", a sliding-window aggregate that interpolates for lost readings. In this paper, we propose SMURF, the first declarative, adaptive smoothing filter for RFID ..."
Abstract
-
Cited by 101 (0 self)
- Add to MetaCart
ABSTRACT To compensate for the inherent unreliability of RFID data streams, most RFID middleware systems employ a "smoothing filter", a sliding-window aggregate that interpolates for lost readings. In this paper, we propose SMURF, the first declarative, adaptive smoothing filter for RFID data cleaning. SMURF models the unreliability of RFID readings by viewing RFID streams as a statistical sample of tags in the physical world, and exploits techniques grounded in sampling theory to drive its cleaning processes. Through the use of tools such as binomial sampling and π-estimators, SMURF continuously adapts the smoothing window size in a principled manner to provide accurate RFID data to applications.
Declarative support for . . .
"... Pervasive applications rely on data captured from the physical world through sensor devices. Data provided by these devices, however, tend to be unreliable. The data must, therefore, be cleaned before an application can make use of them, leading to additional complexity for application development ..."
Abstract
-
Cited by 4 (0 self)
- Add to MetaCart
Pervasive applications rely on data captured from the physical world through sensor devices. Data provided by these devices, however, tend to be unreliable. The data must, therefore, be cleaned before an application can make use of them, leading to additional complexity for application development and deployment. Here we present Extensible Sensor stream Processing (ESP), a framework for building sensor data cleaning infrastructures for use in pervasive applications. ESP is designed as a pipeline using declarative cleaning mechanisms based on spatial and temporal characteristics of sensor data. We demonstrate ESP’s effectiveness and ease of use through three real-world scenarios.