Results 1  10
of
84
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
(Show Context)
In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias towards some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Paretooptimal points sim...
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
 IN PROCEEDINGS OF THE FIRST IEEE CONFERENCE ON EVOLUTIONARY COMPUTATION, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic a ..."
Abstract

Cited by 395 (6 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic algorithm (GA), however, is readily modified to deal with multiple objectives by incorporating the concept of Pareto domination in its selection operator, and applying a niching pressure to spread its population out along the Pareto optimal tradeoff surface. We introduce the Niched Pareto GA as an algorithm for finding the Pareto optimal set. We demonstrate its ability to find and maintain a diverse "Pareto optimal population" on two artificial problems and an open problem in hydrosystems.
MultiObjective Genetic Algorithms: Problem Difficulties and Construction of Test Problems
 Evolutionary Computation
, 1999
"... In this paper, we study the problem features that may cause a multiobjective genetic algorithm (GA) difficulty in converging to the true Paretooptimal front. Identification of such features helps us develop difficult test problems for multiobjective optimization. Multiobjective test problems ..."
Abstract

Cited by 199 (11 self)
 Add to MetaCart
(Show Context)
In this paper, we study the problem features that may cause a multiobjective genetic algorithm (GA) difficulty in converging to the true Paretooptimal front. Identification of such features helps us develop difficult test problems for multiobjective optimization. Multiobjective test problems are constructed from singleobjective optimization problems, thereby allowing known difficult features of singleobjective problems (such as multimodality, isolation, or deception) to be directly transferred to the corresponding multiobjective problem. In addition, test problems having features specific to multiobjective optimization are also constructed. More importantly, these difficult test problems will enable researchers to test their algorithms for specific aspects of multiobjective optimization. Keywords Genetic algorithms, multiobjective optimization, niching, paretooptimality, problem difficulties, test problems. 1 Introduction After a decade since the pioneering wor...
Learning sequential decision rules using simulation models and competition
 Machine Learning
, 1990
"... Abstract. The problem of learning decision rules for sequential tasks is addressed, focusing on the problem of learning tactical decision rules from a simple flight simulator. The learning method relies on the notion of competition and employs genetic algorithms to search the space of decision polic ..."
Abstract

Cited by 156 (38 self)
 Add to MetaCart
(Show Context)
Abstract. The problem of learning decision rules for sequential tasks is addressed, focusing on the problem of learning tactical decision rules from a simple flight simulator. The learning method relies on the notion of competition and employs genetic algorithms to search the space of decision policies. Several experiments are presented that address issues arising from differences between the simulation model on which learning occurs and the target environment on which the decision rules are ultimately tested. Key words: sequential decision rules, competitionbased learning, genetic algorithms
Scalable Test Problems for Evolutionary MultiObjective Optimization
 Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH
, 2001
"... After adequately demonstrating the ability to solve di#erent twoobjective optimization problems, multiobjective evolutionary algorithms (MOEAs) must now show their e#cacy in handling problems having more than two objectives. In this paper, we have suggested three di#erent approaches for systema ..."
Abstract

Cited by 150 (22 self)
 Add to MetaCart
(Show Context)
After adequately demonstrating the ability to solve di#erent twoobjective optimization problems, multiobjective evolutionary algorithms (MOEAs) must now show their e#cacy in handling problems having more than two objectives. In this paper, we have suggested three di#erent approaches for systematically designing test problems for this purpose. The simplicity of construction, scalability to any number of decision variables and objectives, knowledge of exact shape and location of the resulting Paretooptimal front, and introduction of controlled di#culties in both converging to the true Paretooptimal front and maintaining a widely distributed set of solutions are the main features of the suggested test problems. Because of the above features, they should be found useful in various research activities on MOEAs, such as testing the performance of a new MOEA, comparing di#erent MOEAs, and better understanding of the working principles of MOEAs.
Multiobjective Optimization Using the Niched Pareto Genetic Algorithm
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives (i.e., attributes or criteria) have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives ..."
Abstract

Cited by 141 (4 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives (i.e., attributes or criteria) have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The most recent development in the field of decision analysis has yielded a rigorous technique for combining attributes multiplicatively (thereby incorporating nonlinearity), and for handling uncertainty in the attribute values. But MultiAttribute Utility Analysis (MAUA) provides only a mapping from a vectorvalued objective function to a scalarvalued function, and does not address the difficulty of searching large problem spaces. Genetic algorithms (GAs), on the other hand, are well suited to searching intractably large, poorly understood problem spaces, but have mostly been used to optimize a single objective. The direct combination of MAUA and GAs is a logical next step...
Scalable MultiObjective Optimization Test Problems
 in Congress on Evolutionary Computation (CEC’2002
, 2002
"... After adequately demonstrating the ability to solve different twoobjective optimization problems, multiobjective evolutionary algorithms (MOEAs) must now show their efficacy in handling problems having more than two objectives. In this paper, we suggest three different approaches for systematicall ..."
Abstract

Cited by 112 (8 self)
 Add to MetaCart
(Show Context)
After adequately demonstrating the ability to solve different twoobjective optimization problems, multiobjective evolutionary algorithms (MOEAs) must now show their efficacy in handling problems having more than two objectives. In this paper, we suggest three different approaches for systematically designing test problems for this purpose. The simplicity of construction, scalability to any number of decision variables and objectives, knowledge of exact shape and location of the resulting Paretooptimal front, and ability to control difficulties in both converging to the true Paretooptimal front and maintaining a widely distributed set of solutions are the main features of the suggested test problems. Because of these features, they should be found useful in various research activities on MOEAs, such as testing the performance of a new MOEA, comparing different MOEAs, and having a better understanding of the working principles of MOEAs.
A survey of constraint handling techniques in evolutionary computation methods
 Proceedings of the 4th Annual Conference on Evolutionary Programming
, 1995
"... One of the major components of any evolutionary system is the eval� uation function. Evaluation functions are used to assign a quality measure for individuals in a population. Whereas evolutionary com� putation techniques assume the existence of an �e�cient � evaluation function for feasible individ ..."
Abstract

Cited by 102 (5 self)
 Add to MetaCart
One of the major components of any evolutionary system is the eval� uation function. Evaluation functions are used to assign a quality measure for individuals in a population. Whereas evolutionary com� putation techniques assume the existence of an �e�cient � evaluation function for feasible individuals � there is no uniform methodology for handling �i.e. � evaluating � unfeasible ones. The simplest approach� incorporated by evolution strategies and a version of evolutionary programming �for numerical optimization problems� � is to reject un� feasible solutions. But several other methods for handling unfeasible individuals have emerged recently. This paper reviews such methods �using a domain of nonlinear programming problems � and discusses their merits and drawbacks. 1
Bayesian Optimization Algorithm: From Single Level to Hierarchy
, 2002
"... There are four primary goals of this dissertation. First, design a competent optimization algorithm capable of learning and exploiting appropriate problem decomposition by sampling and evaluating candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical decompositi ..."
Abstract

Cited by 101 (19 self)
 Add to MetaCart
(Show Context)
There are four primary goals of this dissertation. First, design a competent optimization algorithm capable of learning and exploiting appropriate problem decomposition by sampling and evaluating candidate solutions. Second, extend the proposed algorithm to enable the use of hierarchical decomposition as opposed to decomposition on only a single level. Third, design a class of difficult hierarchical problems that can be used to test the algorithms that attempt to exploit hierarchical decomposition. Fourth, test the developed algorithms on the designed class of problems and several realworld applications. The dissertation proposes the Bayesian optimization algorithm (BOA), which uses Bayesian networks to model the promising solutions found so far and sample new candidate solutions. BOA is theoretically and empirically shown to be capable of both learning a proper decomposition of the problem and exploiting the learned decomposition to ensure robust and scalable search for the optimum across a wide range of problems. The dissertation then identifies important features that must be incorporated into the basic BOA to solve problems that are not decomposable on a single level, but that can still be solved by decomposition over multiple levels of difficulty. Hierarchical
Competitionbased induction of decision models from examples
 Mach. Learn
, 1993
"... Abstract. Symbolic induction is a promising approach to constructing decision models by extracting regularities from a data set of examples. The predominant type of model is a classification rule (or set of rules) that maps a set of relevant environmental features into specific categories or values. ..."
Abstract

Cited by 66 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Symbolic induction is a promising approach to constructing decision models by extracting regularities from a data set of examples. The predominant type of model is a classification rule (or set of rules) that maps a set of relevant environmental features into specific categories or values. Classifying loan risk based on borrower profiles, consumer choice from purchase data, or supply levels based on operating conditions are all examples of this type of modelbuilding task. Although current inductive approaches, such as ID3 and CN2, perform well on certain problems, their potential is limited by the incremental nature of their search. Genetic,algorithms (GA) have shown great promise on complex search domains, and hence suggest a means for overcoming these limitations. However, effective use of genetic search in this context requires a framework that promotes the fundamental modelbuilding objectives of predictive accuracy and model simplicity. In this article we describe, COGIN, a GAbased inductive system that exploits the conventions of induction from examples to provide this framework. The novelty of COGIN lies in its use of training set coverage to simultaneously promote competition in various classification niches within the model and constrain overall model complexity. Experimental comparisons 'with NewID and CN2 provide evidence of the effectiveness of the COGIN framework and the viability of the GA approach.