Results 1  10
of
62
Fast Linearized Bregman Iteration for Compressed Sensing
 and Sparse Denoising, 2008. UCLA CAM Reprots
, 2008
"... Abstract. Finding a solution of a linear equation Au = f with various minimization properties arises from many applications. One of such applications is compressed sensing, where an efficient and robusttonoise algorithm to find a minimal ℓ1 norm solution is needed. This means that the algorithm sh ..."
Abstract

Cited by 96 (20 self)
 Add to MetaCart
(Show Context)
Abstract. Finding a solution of a linear equation Au = f with various minimization properties arises from many applications. One of such applications is compressed sensing, where an efficient and robusttonoise algorithm to find a minimal ℓ1 norm solution is needed. This means that the algorithm should be tailored for large scale and completely dense matrices A, while Au and A T u can be computed by fast transforms and the solution to seek is sparse. Recently, a simple and fast algorithm based on linearized Bregman iteration was proposed in [28, 32] for this purpose. This paper is to analyze the convergence of linearized Bregman iterations and the minimization properties of their limit. Based on our analysis here, we derive also a new algorithm that is proven to be convergent with a rate. Furthermore, the new algorithm is as simple and fast as the algorithm given in [28, 32] in approximating a minimal ℓ1 norm solution of Au = f as shown by numerical simulations. Hence, it can be used as another choice of an efficient tool in compressed sensing. 1. Introduction. Let A ∈ R m×n with n> m and f ∈ R m be given. The aim of a basis pursuit problem is to find u ∈ R n by solving the following constrained minimization problem min
A douglasRachford splitting approach to nonsmooth convex variational signal recovery
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to so ..."
Abstract

Cited by 86 (22 self)
 Add to MetaCart
(Show Context)
Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the DouglasRachford algorithm for monotone operatorsplitting, is obtained under general conditions. Applications to nonGaussian image denoising in a tight frame are also demonstrated.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. IMAGING SCI
, 2008
"... We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 insta ..."
Abstract

Cited by 84 (15 self)
 Add to MetaCart
(Show Context)
We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
FIXEDPOINT CONTINUATION FOR ℓ1MINIMIZATION: METHODOLOGY AND CONVERGENCE
"... We present a framework for solving largescale ℓ1regularized convex minimization problem: min �x�1 + µf(x). Our approach is based on two powerful algorithmic ideas: operatorsplitting and continuation. Operatorsplitting results in a fixedpoint algorithm for any given scalar µ; continuation refers ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
We present a framework for solving largescale ℓ1regularized convex minimization problem: min �x�1 + µf(x). Our approach is based on two powerful algorithmic ideas: operatorsplitting and continuation. Operatorsplitting results in a fixedpoint algorithm for any given scalar µ; continuation refers to approximately following the path traced by the optimal value of x as µ increases. In this paper, we study the structure of optimal solution sets; prove finite convergence for important quantities; and establish qlinear convergence rates for the fixedpoint algorithm applied to problems with f(x) convex, but not necessarily strictly convex. The continuation framework, motivated by our convergence results, is demonstrated to facilitate the construction of practical algorithms.
A variational formulation for framebased inverse problems
 Inverse Problems
, 2007
"... A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smo ..."
Abstract

Cited by 60 (21 self)
 Add to MetaCart
(Show Context)
A convex variational framework is proposed for solving inverse problems in Hilbert spaces with a priori information on the representation of the target solution in a frame. The objective function to be minimized consists of a separable term penalizing each frame coefficient individually and of a smooth term modeling the data formation model as well as other constraints. Sparsityconstrained and Bayesian formulations are examined as special cases. A splitting algorithm is presented to solve this problem and its convergence is established in infinitedimensional spaces under mild conditions on the penalization functions, which need not be differentiable. Numerical simulations demonstrate applications to framebased image restoration. 1
A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation
 SIAM Journal on Scientific Computing
, 2010
"... Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
(Show Context)
Abstract. We propose a fast algorithm for solving the ℓ1regularized minimization problem minx∈R n µ‖x‖1 + ‖Ax − b ‖ 2 2 for recovering sparse solutions to an undetermined system of linear equations Ax = b. The algorithm is divided into two stages that are performed repeatedly. In the first stage a firstorder iterative method called “shrinkage ” yields an estimate of the subset of components of x likely to be nonzero in an optimal solution. Restricting the decision variables x to this subset and fixing their signs at their current values reduces the ℓ1norm ‖x‖1 to a linear function of x. The resulting subspace problem, which involves the minimization of a smaller and smooth quadratic function, is solved in the second phase. Our code FPC AS embeds this basic twostage algorithm in a continuation (homotopy) approach by assigning a decreasing sequence of values to µ. This code exhibits stateoftheart performance both in terms of its speed and its ability to recover sparse signals. It can even recover signals that are not as sparse as required by current compressive sensing theory.
Restoration of Poissonian images using alternating direction optimization
 IEEE Trans. Image Process
, 2010
"... Abstract—Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using stateoftheart regularizers (such as those based upon multiscale representations or total variation) is still an a ..."
Abstract

Cited by 53 (5 self)
 Add to MetaCart
(Show Context)
Abstract—Much research has been devoted to the problem of restoring Poissonian images, namely for medical and astronomical applications. However, the restoration of these images using stateoftheart regularizers (such as those based upon multiscale representations or total variation) is still an active research area, since the associated optimization problems are quite challenging. In this paper, we propose an approach to deconvolving Poissonian images, which is based upon an alternating direction optimization method. The standard regularization [or maximum a posteriori (MAP)] restoration criterion, which combines the Poisson loglikelihood with a (nonsmooth) convex regularizer (logprior), leads to hard optimization problems: the loglikelihood is nonquadratic and nonseparable, the regularizer is nonsmooth, and there is a nonnegativity constraint. Using standard convex analysis tools, we present sufficient conditions for existence and uniqueness of solutions of these optimization problems, for several types of regularizers: totalvariation, framebased analysis, and framebased synthesis. We attack these problems with an instance of the alternating direction method of multipliers (ADMM), which belongs to the family of augmented Lagrangian algorithms. We study sufficient conditions for convergence and show that these are satisfied, either under totalvariation or framebased (analysis and synthesis) regularization. The resulting algorithms are shown to outperform alternative stateoftheart methods, both in terms of speed and restoration accuracy. Index Terms—Alternating direction methods, augmented Lagrangian, convex optimization, image deconvolution, image restoration, Poisson images. I.
A proximal iteration for deconvolving Poisson noisy images using sparse representations
"... ..."
(Show Context)
A parallel inertial proximal optimization methods
 Pac. J. Optim
, 2012
"... The DouglasRachford algorithm is a popular iterative method for finding a zero of a sum of two maximally monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum ..."
Abstract

Cited by 37 (14 self)
 Add to MetaCart
(Show Context)
The DouglasRachford algorithm is a popular iterative method for finding a zero of a sum of two maximally monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of maximal operators. Based on this algorithm, parallel proximal algorithms are proposed to minimize over a linear subspace of a Hilbert space the sum of a finite number of proper, lower semicontinuous convex functions composed with linear operators. It is shown that particular cases of these methods are the simultaneous direction method of multipliers proposed by Stetzer et al., the parallel proximal algorithm developed by Combettes and Pesquet, and a parallelized version of an algorithm proposed by Attouch and Soueycatt.
Analysis and generalizations of the linearized Bregman method
 SIAM J. IMAGING SCI
, 2010
"... This paper analyzes and improves the linearized Bregman method for solving the basis pursuit and related sparse optimization problems. The analysis shows that the linearized Bregman method has the exact regularization property; namely, it converges to an exact solution of the basis pursuit problem ..."
Abstract

Cited by 36 (9 self)
 Add to MetaCart
This paper analyzes and improves the linearized Bregman method for solving the basis pursuit and related sparse optimization problems. The analysis shows that the linearized Bregman method has the exact regularization property; namely, it converges to an exact solution of the basis pursuit problem whenever its smooth parameter α is greater than a certain value. The analysis is based on showing that the linearized Bregman algorithm is equivalent to gradient descent applied to a certain dual formulation. This result motivates generalizations of the algorithm enabling the use of gradientbased optimization techniques such as line search, Barzilai–Borwein, limited memory BFGS (LBFGS), nonlinear conjugate gradient, and Nesterov’s methods. In the numerical simulations, the two proposed implementations, one using Barzilai–Borwein steps with nonmonotone line search and the other using LBFGS, gave more accurate solutions in much shorter times than the basic implementation of the linearized Bregman method with a socalled kicking technique.