Results 1  10
of
128
Ricci curvature for metricmeasure spaces via optimal transport
 ANN. OF MATH
, 2005
"... We define a notion of a measured length space X having nonnegative NRicci curvature, for N ∈ [1, ∞), or having ∞Ricci curvature bounded below by K, for K ∈ R. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of proba ..."
Abstract

Cited by 231 (10 self)
 Add to MetaCart
We define a notion of a measured length space X having nonnegative NRicci curvature, for N ∈ [1, ∞), or having ∞Ricci curvature bounded below by K, for K ∈ R. The definitions are in terms of the displacement convexity of certain functions on the associated Wasserstein metric space P2(X) of probability measures. We show that these properties are preserved under measured GromovHausdorff limits. We give geometric and analytic consequences.
Contractions in the 2Wasserstein Length Space and Thermalization of Granular Media
, 2004
"... An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flowthrough model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical ..."
Abstract

Cited by 115 (32 self)
 Add to MetaCart
(Show Context)
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flowthrough model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinitedimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even nonconvexity) — if uniformly controlled — will quantify contractivity (limit expansivity) of the flow.
Heat flow on Finsler manifolds
, 2009
"... This paper studies the heat flow on Finsler manifolds. A Finsler manifold is a smooth manifold M equipped with a Minkowski norm F(x, ·) : TxM → R+ on each tangent space. Mostly, we will require that this norm is strongly convex and smooth and that it depends smoothly on the base point x. The particu ..."
Abstract

Cited by 47 (18 self)
 Add to MetaCart
(Show Context)
This paper studies the heat flow on Finsler manifolds. A Finsler manifold is a smooth manifold M equipped with a Minkowski norm F(x, ·) : TxM → R+ on each tangent space. Mostly, we will require that this norm is strongly convex and smooth and that it depends smoothly on the base point x. The particular case of a Hilbert norm on each tangent space leads to the important subclasses of Riemannian manifolds where the heat flow is widely studied and well understood. We present two approaches to the heat flow on a Finsler manifold: • either as gradient flow on L2 (M,m) for the energy E(u) = 1
Localization and tensorization properties of the curvaturedimension condition for metric measure spaces
 J. Funct. Anal
, 2011
"... ar ..."
(Show Context)
Curvaturedimension inequalities and Ricci lower bounds for subRiemannian manifolds with transverse symmetries
, 2012
"... ..."
(Show Context)
EULERIAN CALCULUS FOR THE CONTRACTION IN THE WASSERSTEIN DISTANCE
"... We consider the porous medium equation on a compact Riemannian manifold and give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is based on the insight that the porous medium equation does not increase the size of infinitesimal perturbations along gradient fl ..."
Abstract

Cited by 43 (4 self)
 Add to MetaCart
(Show Context)
We consider the porous medium equation on a compact Riemannian manifold and give a new proof of the contraction of its semigroup in the Wasserstein distance. This proof is based on the insight that the porous medium equation does not increase the size of infinitesimal perturbations along gradient flow trajectories, and on an Eulerian formulation for the Wasserstein distance using smooth curves. Our approach avoids the existence result for optimal transport maps on Riemannian manifolds.
Heat flow on Alexandrov spaces
, 2012
"... We prove that on compact Alexandrov spaces with curvature bounded below the gradient flow of the Dirichlet energy in the L²space produces the same evolution as the gradient flow of the relative entropy in the L²Wasserstein space. This means that the heat flow is well defined by either one of the t ..."
Abstract

Cited by 42 (15 self)
 Add to MetaCart
We prove that on compact Alexandrov spaces with curvature bounded below the gradient flow of the Dirichlet energy in the L²space produces the same evolution as the gradient flow of the relative entropy in the L²Wasserstein space. This means that the heat flow is well defined by either one of the two gradient flows. Combining properties of these flows, we are able to deduce the Lipschitz continuity of the heat kernel as well as BakryÉmery gradient estimates and the Γ2condition. Our identification is established by purely metric means, unlike preceding results relying on PDE techniques. Our approach generalizes to the case of heat flow with drift.
inequalities on manifolds with boundary and applications
 J. Math. Pures Appl
"... ar ..."
(Show Context)
GRADIENT FLOWS ON WASSERSTEIN SPACES OVER COMPACT ALEXANDROV SPACES
"... Abstract. We establish the existence of Euclidean tangent cones on Wasserstein spaces over compact Alexandrov spaces of curvature bounded below. By using this Riemannian structure, we formulate and construct gradient flows of functions on such spaces. If the underlying space is a Riemannian manifold ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We establish the existence of Euclidean tangent cones on Wasserstein spaces over compact Alexandrov spaces of curvature bounded below. By using this Riemannian structure, we formulate and construct gradient flows of functions on such spaces. If the underlying space is a Riemannian manifold of nonnegative sectional curvature, then our gradient flow of the free energy produces a solution of the linear FokkerPlanck equation. 1. Introduction. Our main object in the article is the (quadratic) Wasserstein space (P(X), dW 2) (also called the KantorovichRubinstein space) over a compact metric space (X, d). The Wasserstein space (P(X), dW 2) is by definition the space of probability measures on X equipped with a certain distance structure dW 2 which metrizes the weak topology of P(X). Recently, it has turned out that
RICCI FLOW, ENTROPY AND OPTIMAL TRANSPORTATION
"... Abstract. Let a smooth family of Riemannian metrics g(τ) satisfy the backwards Ricci flow equation on a compact oriented ndimensional manifold M. Suppose two families of normalized nforms ω(τ) ≥ 0 and ˜ω(τ) ≥ 0 satisfy the forwards (in τ) heat equation on M generated by the connection Laplacian ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
(Show Context)
Abstract. Let a smooth family of Riemannian metrics g(τ) satisfy the backwards Ricci flow equation on a compact oriented ndimensional manifold M. Suppose two families of normalized nforms ω(τ) ≥ 0 and ˜ω(τ) ≥ 0 satisfy the forwards (in τ) heat equation on M generated by the connection Laplacian ∆g(τ). If these nforms represent two evolving distributions of particles over M, the minimum rootmeansquare distance W2(ω(τ), ˜ω(τ), τ) to transport the particles of ω(τ) onto those of ˜ω(τ) is shown to be nonincreasing as a function of τ, without sign conditions on the curvature of (M, g(τ)). Moreover, this contractivity property is shown to characterize supersolutions to the Ricci flow.