Results 1  10
of
330
Networkbased marketing: Identifying likely adopters via consumer networks
 Statistical Science
"... Abstract. Networkbased marketing refers to a collection of marketing techniques that take advantage of links between consumers to increase sales. We concentrate on the consumer networks formed using direct interactions (e.g., communications) between consumers. We survey the diverse literature on su ..."
Abstract

Cited by 113 (13 self)
 Add to MetaCart
(Show Context)
Abstract. Networkbased marketing refers to a collection of marketing techniques that take advantage of links between consumers to increase sales. We concentrate on the consumer networks formed using direct interactions (e.g., communications) between consumers. We survey the diverse literature on such marketing with an emphasis on the statistical methods used and the data to which these methods have been applied. We also provide a discussion of challenges and opportunities for this burgeoning research topic. Our survey highlights a gap in the literature. Because of inadequate data, prior studies have not been able to provide direct, statistical support for the hypothesis that network linkage can directly affect product/service adoption. Using a new data set that represents the adoption of a new telecommunications service, we show very strong support for the hypothesis. Specifically, we show three main results: (1) “Network neighbors”—those consumers linked to a prior customer—adopt the service at a rate 3–5 times greater than baseline groups selected by the best practices of the firm’s marketing team. In addition, analyzing the network allows the firm to acquire new customers who otherwise would have fallen through the cracks, because they would not have been identified based on traditional attributes. (2) Statistical models, built with a very large amount of geographic, demographic and prior purchase data, are significantly and substantially improved by including network information. (3) More detailed network information allows the ranking of the network neighbors so as to permit the selection of small sets of individuals with very high probabilities of adoption. Key words and phrases: Viral marketing, word of mouth, targeted marketing, network analysis, classification, statistical relational learning. 1.
To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles
 In WWW
, 2009
"... In order to address privacy concerns, many social media websites allow users to hide their personal profiles from the public. In this work, we show how an adversary can exploit an online social network with a mixture of public and private user profiles to predict the private attributes of users. We ..."
Abstract

Cited by 106 (3 self)
 Add to MetaCart
(Show Context)
In order to address privacy concerns, many social media websites allow users to hide their personal profiles from the public. In this work, we show how an adversary can exploit an online social network with a mixture of public and private user profiles to predict the private attributes of users. We map this problem to a relational classification problem and we propose practical models that use friendship and group membership information (which is often not hidden) to infer sensitive attributes. The key novel idea is that in addition to friendship links, groups can be carriers of significant information. We show that on several wellknown social media sites, we can easily and accurately recover the information of privateprofile users. To the best of our knowledge, this is the first work that uses linkbased and groupbased classification to study privacy implications in social networks with mixed public and private user profiles.
Relational learning via latent social dimensions, in 'KDD '09
 Proceedings di of the 15th ACM SIGKDD international ti conference on Knowledge
, 2009
"... Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. ..."
Abstract

Cited by 88 (28 self)
 Add to MetaCart
(Show Context)
Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. However, the connections in social media are often multidimensional. An actor can connect to another actor due to different factors, e.g., alumni, colleagues, living in the same city or sharing similar interest, etc. Collective inference normally does not differentiate these connections. In this work, we propose to extract latent social dimensions based on network information first, and then utilize them as features for discriminative learning. These social dimensions describe different affiliations of social actors hidden in the network, and the subsequent discriminative learning can automatically determine which affiliations are better aligned with the class labels. Such a scheme is preferred when multiple diverse relations are associated with the same network. We conduct extensive experiments on social media data (one from a realworld blog site and the other from a popular content sharing site). Our model outperforms representative relational learning methods based on collective inference, especially when few labeled data are available. The sensitivity of this model and its connection to existing methods are also carefully examined.
Efficient weight learning for Markov logic networks
 In Proceedings of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases
, 2007
"... Abstract. Markov logic networks (MLNs) combine Markov networks and firstorder logic, and are a powerful and increasingly popular representation for statistical relational learning. The stateoftheart method for discriminative learning of MLN weights is the voted perceptron algorithm, which is ess ..."
Abstract

Cited by 87 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Markov logic networks (MLNs) combine Markov networks and firstorder logic, and are a powerful and increasingly popular representation for statistical relational learning. The stateoftheart method for discriminative learning of MLN weights is the voted perceptron algorithm, which is essentially gradient descent with an MPE approximation to the expected sufficient statistics (true clause counts). Unfortunately, these can vary widely between clauses, causing the learning problem to be highly illconditioned, and making gradient descent very slow. In this paper, we explore several alternatives, from perweight learning rates to secondorder methods. In particular, we focus on two approaches that avoid computing the partition function: diagonal Newton and scaled conjugate gradient. In experiments on standard SRL datasets, we obtain orderofmagnitude speedups, or more accurate models given comparable learning times. 1
Event modeling and recognition using markov logic networks
 IN ECCV
, 2008
"... We address the problem of visual event recognition in surveillance where noise and missing observations are serious problems. Common sense domain knowledge is exploited to overcome them. The knowledge is represented as firstorder logic production rules with associated weights to indicate their con ..."
Abstract

Cited by 83 (4 self)
 Add to MetaCart
(Show Context)
We address the problem of visual event recognition in surveillance where noise and missing observations are serious problems. Common sense domain knowledge is exploited to overcome them. The knowledge is represented as firstorder logic production rules with associated weights to indicate their confidence. These rules are used in combination with a relaxed deduction algorithm to construct a network of grounded atoms, the Markov Logic Network. The network is used to perform probabilistic inference for input queries about events of interest. The system’s performance is demonstrated on a number of videos from a parking lot domain that contains complex interactions of people and vehicles.
Probabilistic Theorem Proving
"... Many representation schemes combining firstorder logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logic ..."
Abstract

Cited by 66 (21 self)
 Add to MetaCart
(Show Context)
Many representation schemes combining firstorder logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logical structure into account. We propose the first method that has the full power of both graphical model inference and firstorder theorem proving (in finite domains with Herbrand interpretations). We first define probabilistic theorem proving, their generalization, as the problem of computing the probability of a logical formula given the probabilities or weights of a set of formulas. We then show how this can be reduced to the problem of lifted weighted model counting, and develop an efficient algorithm for the latter. We prove the correctness of this algorithm, investigate its properties, and show how it generalizes previous approaches. Experiments show that it greatly outperforms lifted variable elimination when logical structure is present. Finally, we propose an algorithm for approximate probabilistic theorem proving, and show that it can greatly outperform lifted belief propagation. 1
A ThreeWay Model for Collective Learning on MultiRelational Data
"... Relational learning is becoming increasingly important in many areas of application. Here, we present a novel approach to relational learning based on the factorization of a threeway tensor. We show that unlike other tensor approaches, our method is able to perform collective learning via the laten ..."
Abstract

Cited by 64 (13 self)
 Add to MetaCart
(Show Context)
Relational learning is becoming increasingly important in many areas of application. Here, we present a novel approach to relational learning based on the factorization of a threeway tensor. We show that unlike other tensor approaches, our method is able to perform collective learning via the latent components of the model and provide an efficient algorithm to compute the factorization. We substantiate our theoretical considerations regarding the collective learning capabilities of our model by the means of experiments on both a new dataset and a dataset commonly used in entity resolution. Furthermore, we show on common benchmark datasets that our approach achieves better or onpar results, if compared to current stateoftheart relational learning solutions, while it is significantly faster to compute. 1.
Combining InstanceBased Learning and Logistic Regression for Multilabel Classification
"... Abstract. Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for standard classification, instancebased learning algorithms relying on the nearest neighbor estimation p ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Multilabel classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Recent research has shown that, just like for standard classification, instancebased learning algorithms relying on the nearest neighbor estimation principle can be used quite successfully in this context. However, since hitherto existing algorithms do not take correlations and interdependencies between labels into account, their potential has not yet been fully exploited. In this paper, we propose a new approach to multilabel classification, which is based on a framework that unifies instancebased learning and logistic regression, comprising both methods as special cases. This approach allows one to capture interdependencies between labels and, moreover, to combine modelbased and similaritybased inference for multilabel classification. As will be shown by experimental studies, our approach is able to improve predictive accuracy in terms of several evaluation criteria for multilabel prediction. 1
Counting belief propagation
 In Proc. UAI09
, 2009
"... A major benefit of graphical models is that most knowledge is captured in the model structure. Many models, however, produce inference problems with a lot of symmetries not reflected in the graphical structure and hence not exploitable by efficient inference techniques such as belief propagation (BP ..."
Abstract

Cited by 51 (20 self)
 Add to MetaCart
(Show Context)
A major benefit of graphical models is that most knowledge is captured in the model structure. Many models, however, produce inference problems with a lot of symmetries not reflected in the graphical structure and hence not exploitable by efficient inference techniques such as belief propagation (BP). In this paper, we present a new and simple BP algorithm, called counting BP, that exploits such additional symmetries. Starting from a given factor graph, counting BP first constructs a compressed factor graph of clusternodes and clusterfactors, corresponding to sets of nodes and factors that are indistinguishable given the evidence. Then it runs a modified BP algorithm on the compressed graph that is equivalent to running BP on the original factor graph. Our experiments show that counting BP is applicable to a variety of important AI tasks such as (dynamic) relational models and boolean model counting, and that significant efficiency gains are obtainable, often by orders of magnitude. 1