Results 1  10
of
28
Subexponential parameterized algorithms on graphs of boundedgenus and Hminorfree Graphs
"... ... Building on these results, we develop subexponential fixedparameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. Inparticular, this general category of graphs includes planar graphs, boundedgenus graphs, singlecrossing ..."
Abstract

Cited by 63 (22 self)
 Add to MetaCart
... Building on these results, we develop subexponential fixedparameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. Inparticular, this general category of graphs includes planar graphs, boundedgenus graphs, singlecrossingminorfree graphs, and anyclass of graphs that is closed under taking minors. Specifically, the running time is 2O(pk)nh, where h is a constant depending onlyon H, which is polynomial for k = O(log² n). We introducea general approach for developing algorithms on Hminorfreegraphs, based on structural results about Hminorfree graphs at the
Measure and Conquer: Domination  A case study
"... DavisPutnamstyle exponentialtime backtracking algorithms are the most common algorithms used for finding exact solutions of NPhard problems. The analysis of such recursive algorithms is based on the bounded search tree technique: a measure of the size of the subproblems is defined; this measure ..."
Abstract

Cited by 57 (22 self)
 Add to MetaCart
DavisPutnamstyle exponentialtime backtracking algorithms are the most common algorithms used for finding exact solutions of NPhard problems. The analysis of such recursive algorithms is based on the bounded search tree technique: a measure of the size of the subproblems is defined; this measure is used to lower bound the progress made by the algorithm at each branching step. For the last 30 years the research on exact algorithms has been mainly focused on the design of more and more sophisticated algorithms. However, measures used in the analysis of backtracking algorithms are usually very simple. In this paper we stress that a more careful choice of the measure can lead to significantly better the worst case time analysis. As an example, we consider the minimum dominating set problem. The currently fastest algorithm for this problem has running time O(2
A measure & conquer approach for the analysis of exact algorithms
, 2007
"... For more than 40 years Branch & Reduce exponentialtime backtracking algorithms have been among the most common tools used for finding exact solutions of NPhard problems. Despite that, the way to analyze such recursive algorithms is still far from producing tight worstcase running time bounds. ..."
Abstract

Cited by 49 (11 self)
 Add to MetaCart
For more than 40 years Branch & Reduce exponentialtime backtracking algorithms have been among the most common tools used for finding exact solutions of NPhard problems. Despite that, the way to analyze such recursive algorithms is still far from producing tight worstcase running time bounds. Motivated by this we use an approach, that we call “Measure & Conquer”, as an attempt to step beyond such limitations. The approach is based on the careful design of a nonstandard measure of the subproblem size; this measure is then used to lower bound the progress made by the algorithm at each branching step. The idea is that a smarter measure may capture behaviors of the algorithm that a standard measure might not be able to exploit, and hence lead to a significantly better worstcase time analysis. In order to show the potentialities of Measure & Conquer, we consider two wellstudied NPhard problems: minimum dominating set and maximum independent set. For the first problem, we consider the current best algorithm, and prove (thanks to a better measure) a much tighter running time bound for it. For the second problem, we describe a new, simple algorithm, and show that its running time is competitive with the current best time bounds, achieved with far more complicated algorithms (and standard analysis). Our examples
Measure and Conquer: A Simple O(2^0.288n) Independent Set Algorithm
"... For more than 30 years DavisPutnamstyle exponentialtime backtracking algorithms have been the most common tools used for finding exact solutions of NPhard problems. Despite of that, the way to analyze such recursive algorithms is still far from producing tight worst case running time bounds. The ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
For more than 30 years DavisPutnamstyle exponentialtime backtracking algorithms have been the most common tools used for finding exact solutions of NPhard problems. Despite of that, the way to analyze such recursive algorithms is still far from producing tight worst case running time bounds. The “Measure and Conquer” approach is one of the recent attempts to step beyond such limitations. The approach is based on the choice of the measure of the subproblems recursively generated by the algorithm considered; this measure is used to lower bound the progress made by the algorithm at each branching step. A good choice of the measure can lead to a significantly better worst case time analysis. In this paper we apply “Measure and Conquer ” to the analysis of a very simple backtracking algorithm solving the wellstudied maximum independent set problem. The result of the analysis is striking: the running time of the algorithm is O(2 0.288n), which is competitive with the current best time bounds obtained with far more complicated algorithms (and naive analysis). Our example shows that a good choice of the measure, made in the very first stages of exact algorithms design, can have a tremendous impact on the running time bounds achievable.
Solving Connected Dominating Set Faster than 2^n
, 2006
"... In the connected dominating set problem we are given an nnode undirected graph, and we are asked to find a minimum cardinality connected subset S of nodes such that each node not in S is adjacent to some node in S. This problem is also equivalent to finding a spanning tree with maximum number of le ..."
Abstract

Cited by 25 (9 self)
 Add to MetaCart
In the connected dominating set problem we are given an nnode undirected graph, and we are asked to find a minimum cardinality connected subset S of nodes such that each node not in S is adjacent to some node in S. This problem is also equivalent to finding a spanning tree with maximum number of leaves. Despite its relevance in applications, the best known exact algorithm for the problem is the trivial Ω(2 n) algorithm that enumerates all the subsets of nodes. This is not the case for the general (unconnected) version of the problem, for which much faster algorithms are available. Such a difference is not surprising, since connectivity is a global property, and nonlocal problems are typically much harder to solve exactly. In this paper we break the 2 n barrier, by presenting a simple O(1.9407 n) algorithm for the connected dominating set problem. The algorithm makes use of new domination rules, and its analysis is based on the Measure and Conquer technique.
Nondeterministic Graph Searching: From Pathwidth to Treewidth
 In 30th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 3618
, 2005
"... Abstract. We introduce nondeterministic graph searching with a controlled amount of nondeterminism and show how this new tool can be used in algorithm design and combinatorial analysis applying to both pathwidth and treewidth. We prove equivalence between this gametheoretic approach and graph decom ..."
Abstract

Cited by 22 (7 self)
 Add to MetaCart
Abstract. We introduce nondeterministic graph searching with a controlled amount of nondeterminism and show how this new tool can be used in algorithm design and combinatorial analysis applying to both pathwidth and treewidth. We prove equivalence between this gametheoretic approach and graph decompositions called qbranched tree decompositions, which can be interpreted as a parameterized version of tree decompositions. Path decomposition and (standard) tree decomposition are two extreme cases of qbranched tree decompositions. The equivalence between nondeterministic graph searching and qbranched tree decomposition enables us to design an exact (exponential time) algorithm computing qbranched treewidth for all q ≥ 0, which is thus valid for both treewidth and pathwidth. This algorithm performs as fast as the best known exact algorithm for pathwidth. Conversely, this equivalence also enables us to design a lower bound on the amount of nondeterminism required to search a graph with the minimum number of searchers.
Distributed chasing of network intruders
 IN PROC. 13TH COLLOQUIUM ON STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY (SIROCCO’06
, 2006
"... This paper addresses the graph searching problem in a distributed setting. We describe a distributed protocol that enables searchers with logarithmic size memory to clear any network, in a fully decentralized manner. The search strategy for the network in which the searchers are launched is compute ..."
Abstract

Cited by 21 (9 self)
 Add to MetaCart
This paper addresses the graph searching problem in a distributed setting. We describe a distributed protocol that enables searchers with logarithmic size memory to clear any network, in a fully decentralized manner. The search strategy for the network in which the searchers are launched is computed online by the searchers themselves without knowing the topology of the network in advance. It performs in an asynchronous environment, i.e., it implements the necessary synchronization mechanism in a decentralized manner. In every network, our protocol performs a connected strategy using at most k + 1 searchers, where k is the minimum number of searchers required to clear the network in a monotone connected way, computed in the centralized and synchronous setting.
Combinatorial bounds via measure and conquer: Boundings minimal dominating sets and applications
 PRELIM.VERSION IN PROC. 16TH ISAAC
, 2006
"... We provide an algorithm listing all minimal dominating sets of a graph on n vertices in time O(1.7159n). This result can be seen as an algorithmic proof of the fact that the number of minimal dominating sets in a graph on n vertices is at most 1.7159n, thus improving on the trivial O(2n / √ n) boun ..."
Abstract

Cited by 18 (4 self)
 Add to MetaCart
(Show Context)
We provide an algorithm listing all minimal dominating sets of a graph on n vertices in time O(1.7159n). This result can be seen as an algorithmic proof of the fact that the number of minimal dominating sets in a graph on n vertices is at most 1.7159n, thus improving on the trivial O(2n / √ n) bound. Our result makes use of the measure and conquer technique which was recently developed in the area of exact algorithms. Based on this result, we derive an O(2.8718n) algorithm for the domatic number problem.
Bounding the number of minimal dominating sets: a measure and conquer approach
 IN PROCEEDINGS OF THE 16TH ANNUAL INTERNATIONAL SYMPOSIUM ON ALGORITHMS AND COMPUTATION (ISAAC 2005
, 2005
"... We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697 n, thus improving on the trivial O(2 n / √ n) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an O(1.7697 n) listing algorithm. Based ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
We show that the number of minimal dominating sets in a graph on n vertices is at most 1.7697 n, thus improving on the trivial O(2 n / √ n) bound. Our result makes use of the measure and conquer technique from exact algorithms, and can be easily turned into an O(1.7697 n) listing algorithm. Based on this result, we derive an O(2.8805 n) algorithm for the domatic number problem, and an O(1.5780 n) algorithm for the minimumweight dominating set problem. Both algorithms improve over the previous algorithms.