Results 1  10
of
110
Discovering Structural Regularity in 3D Geometry
, 2008
"... We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point or meshbased models. Our method assumes no p ..."
Abstract

Cited by 113 (19 self)
 Add to MetaCart
We introduce a computational framework for discovering regular or repeated geometric structures in 3D shapes. We describe and classify possible regular structures and present an effective algorithm for detecting such repeated geometric patterns in point or meshbased models. Our method assumes no prior knowledge of the geometry or spatial location of the individual elements that define the pattern. Structure discovery is made possible by a careful analysis of pairwise similarity transformations that reveals prominent lattice structures in a suitable model of transformation space. We introduce an optimization method for detecting such uniform grids specifically designed to deal with outliers and missing elements. This yields a robust algorithm that successfully discovers complex regular structures amidst clutter, noise, and missing geometry. The accuracy of the extracted generating transformations is further improved using a novel simultaneous registration method in the spatial domain. We demonstrate the effectiveness of our algorithm on a variety of examples and show applications to compression, model repair, and geometry synthesis.
A Survey on Shape Correspondence
, 2010
"... We present a review of the correspondence problem and its solution methods, targeting the computer graphics audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets, contours or triangle meshes. This survey is motivated by recent developments in ..."
Abstract

Cited by 78 (10 self)
 Add to MetaCart
We present a review of the correspondence problem and its solution methods, targeting the computer graphics audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets, contours or triangle meshes. This survey is motivated by recent developments in the field such as those requiring the correspondence of nonrigid or timevarying surfaces and a recent trend towards semantic shape analysis, of which shape correspondence is one of the central tasks. Establishing a meaningful shape correspondence is a difficult problem since it typically relies on an understanding of the structure of the shapes in question at both a local and global level, and sometimes also the shapes ’ functionality. However, despite its inherent complexity, shape correspondence is a recurrent problem and an essential component in numerous geometry processing applications. In this report, we discuss the different forms of the correspondence problem and review the main solution methods, aided by several classification criteria which can be used by the reader to objectively compare the methods. We finalize the report by discussing open problems and future perspectives.
Probabilistic reasoning for assemblybased 3d modeling
 In Proc. SIGGRAPH, ACM
, 2011
"... Assemblybased modeling is a promising approach to broadening the accessibility of 3D modeling. In assemblybased modeling, new models are assembled from shape components extracted from a database. A key challenge in assemblybased modeling is the identification of relevant components to be presente ..."
Abstract

Cited by 57 (9 self)
 Add to MetaCart
Assemblybased modeling is a promising approach to broadening the accessibility of 3D modeling. In assemblybased modeling, new models are assembled from shape components extracted from a database. A key challenge in assemblybased modeling is the identification of relevant components to be presented to the user. In this paper, we introduce a probabilistic reasoning approach to this problem. Given a repository of shapes, our approach learns a probabilistic graphical model that encodes semantic and geometric relationships among shape components. The probabilistic model is used to present components that are semantically and stylistically compatible with the 3D model that is being assembled. Our experiments indicate that the probabilistic model increases the relevance of presented components.
Folding meshes: Hierarchical mesh segmentation based on planar symmetry
, 2006
"... Meshes representing real world objects, both artistcreated and scanned, contain a high level of redundancy due to (possibly approximate) planar reflection symmetries, either global or localized to different subregions. An algorithm is presented for detecting such symmetries and segmenting the mes ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
Meshes representing real world objects, both artistcreated and scanned, contain a high level of redundancy due to (possibly approximate) planar reflection symmetries, either global or localized to different subregions. An algorithm is presented for detecting such symmetries and segmenting the mesh into the symmetric and remaining regions. The method, inspired by techniques in Computer Vision, has foundations in robust statistics and is resilient to structured outliers which are present in the form of the non symmetric regions of the data. Also introduced is an application of the method: the folding tree data structure. The structure encodes the non redundant regions of the original mesh as well as the reflection planes and is created by the recursive application of the detection method. This structure
Upright orientation of manmade objects
 ACM Trans. Graphics
, 2008
"... Figure 1: Left: A manmade model with unnatural orientation. Middle: Six orientations obtained by aligning the model into a canonical coordinate frame using Principal Component Analysis. Right: Our method automatically detects the upright orientation of the model from its geometry alone. Humans usua ..."
Abstract

Cited by 43 (13 self)
 Add to MetaCart
Figure 1: Left: A manmade model with unnatural orientation. Middle: Six orientations obtained by aligning the model into a canonical coordinate frame using Principal Component Analysis. Right: Our method automatically detects the upright orientation of the model from its geometry alone. Humans usually associate an upright orientation with objects, placing them in a way that they are most commonly seen in our surroundings. While it is an open challenge to recover the functionality of a shape from its geometry alone, this paper shows that it is often possible to infer its upright orientation by analyzing its geometry. Our key idea is to reduce the twodimensional (spherical) orientation space to a small set of orientation candidates using functionalityrelated geometric properties of the object, and then determine the best orientation using an assessment function of several functional geometric attributes defined with respect to each candidate. Specifically we focus on obtaining the upright orientation for manmade objects that typically stand on some flat surface (ground, floor, table, etc.), which include the vast majority of objects in our everyday surroundings. For these types of models orientation candidates can be defined according to static equilibrium. For each candidate, we introduce a set of discriminative attributes linking shape to function. We learn an assessment function of these attributes from a training set using a combination of Random Forest classifier and Support Vector Machine classifier. Experiments demonstrate that our method generalizes well and achieves about 90 % prediction accuracy for both a 10fold crossvalidation over the training set and a validation with an independent test set. 1
Symmetry factored embedding and distance
 ACM Trans. Graph. (Proc. SIGGRAPH
, 2010
"... We introduce the Symmetry Factored Embedding (SFE) and the Symmetry Factored Distance (SFD) as new tools to analyze and represent symmetries in a point set. The SFE provides new coordinates in which symmetry is “factored out, ” and the SFD is the Euclidean distance in that space. These constructions ..."
Abstract

Cited by 42 (6 self)
 Add to MetaCart
We introduce the Symmetry Factored Embedding (SFE) and the Symmetry Factored Distance (SFD) as new tools to analyze and represent symmetries in a point set. The SFE provides new coordinates in which symmetry is “factored out, ” and the SFD is the Euclidean distance in that space. These constructions characterize the space of symmetric correspondences between points – i.e., orbits. A key observation is that a set of points in the same orbit appears as a clique in a correspondence graph induced by pairwise similarities. As a result, the problem of finding approximate and partial symmetries in a point set reduces to the problem of measuring connectedness in the correspondence graph, a wellstudied problem for which spectral methods provide a robust solution. We provide methods for computing the SFE and SFD for extrinsic global symmetries and then extend them to consider partial extrinsic and intrinsic cases. During experiments with difficult examples, we find that the proposed methods can characterize symmetries in inputs with noise, missing data, nonrigid deformations, and complex symmetries, without a priori knowledge of the symmetry group. As such, we believe that it provides a useful tool for automatic shape analysis in applications such as segmentation and stationary point detection. 1
Curve Skeleton Extraction from Incomplete Point Cloud
, 2009
"... We present an algorithm for curve skeleton extraction from imperfect point clouds where large portions of the data may be missing. Our construction is primarily based on a novel notion of generalized rotational symmetry axis (ROSA) of an oriented point set. Specifically, given a subset S of orient ..."
Abstract

Cited by 41 (10 self)
 Add to MetaCart
We present an algorithm for curve skeleton extraction from imperfect point clouds where large portions of the data may be missing. Our construction is primarily based on a novel notion of generalized rotational symmetry axis (ROSA) of an oriented point set. Specifically, given a subset S of oriented points, we introduce a variational definition for an oriented point that is most rotationally symmetric with respect to S. Our formulation effectively utilizes normal information to compensate for the missing data and leads to robust curve skeleton computation over regions of a shape that are generally cylindrical. We present an iterative algorithm via planar cuts to compute the ROSA of a point cloud. This is complemented by special handling of noncylindrical joint regions to obtain a centered, topologically clean, and complete 1D skeleton. We demonstrate that quality curve skeletons can be extracted from a variety of shapes captured by incomplete point clouds. Finally, we show how our algorithm assists in shape completion under these challenges by developing a skeletondriven point cloud completion scheme.
The Columbia grasp database
 IEEE Intl. Conf. on Robotics and Automation
, 2009
"... Abstract — Collecting grasp data for learning and benchmarking purposes is very expensive. It would be helpful to have a standard database of graspable objects, along with a set of stable grasps for each object, but no such database exists. In this work we show how to automate the construction of a ..."
Abstract

Cited by 38 (8 self)
 Add to MetaCart
(Show Context)
Abstract — Collecting grasp data for learning and benchmarking purposes is very expensive. It would be helpful to have a standard database of graspable objects, along with a set of stable grasps for each object, but no such database exists. In this work we show how to automate the construction of a database consisting of several hands, thousands of objects, and hundreds of thousands of grasps. Using this database, we demonstrate a novel grasp planning algorithm that exploits geometric similarity between a 3D model and the objects in the database to synthesize form closure grasps. Our contributions are this algorithm, and the database itself, which we are releasing to the community as a tool for both grasp planning and benchmarking. I.
Partial intrinsic reflectional symmetry of 3d shapes
 ACM Transactions on Graphics (TOG
"... Figure 1: Given a closed 2manifold mesh, we compute a scalar field (a), which accentuates the axes of prominent, partial intrinsic reflectional symmetries. The top few (closed) Voronoi boundaries (b) between symmetric point pairs, as induced by the scalar field, can be imperfect. We develop an iter ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
Figure 1: Given a closed 2manifold mesh, we compute a scalar field (a), which accentuates the axes of prominent, partial intrinsic reflectional symmetries. The top few (closed) Voronoi boundaries (b) between symmetric point pairs, as induced by the scalar field, can be imperfect. We develop an iterative refinement scheme to extract the final set of intrinsic reflectional symmetry axes or IRSAs (c), which can be open curves. Incorporating symmetry cues offered by IRSAs into a conventional mesh segmentation scheme leads to highly semantic results (d). While many 3D objects exhibit various forms of global symmetries, prominent intrinsic symmetries which exist only on parts of an object are also well recognized. Such partial symmetries are often seen as more natural than a global one, even when the symmetric parts are under complex pose. We introduce an algorithm to extract partial intrinsic reflectional symmetries (PIRS) of a 3D shape. Given a closed 2manifold mesh, we develop a voting scheme to obtain an intrinsic reflectional symmetry axis (IRSA) transform, which is a scalar field over the mesh that accentuates prominent IRSAs of the shape. We then extract a set of explicit IRSA curves on the shape based on a refined measure of local reflectional symmetry support along a curve. The iterative refinement procedure combines IRSAinduced region growing and regionconstrained symmetry support refinement to improve accuracy and address potential issues arising from rotational symmetries in the shape. We show how the extracted IRSA curves can be incorporated into a conventional mesh segmentation scheme so that the implied symmetry cues can be utilized to obtain more meaningful results. We also demonstrate the use of IRSA curves for symmetrydriven part repair. 1
StyleContent Separation by Anisotropic Part Scales
"... We perform coanalysis of a set of manmade 3D objects to allow the creation of novel instances derived from the set. We analyze the objects at the part level and treat the anisotropic part scales as a shape style. The coanalysis then allows style transfer to synthesize new objects. The key to coa ..."
Abstract

Cited by 36 (23 self)
 Add to MetaCart
We perform coanalysis of a set of manmade 3D objects to allow the creation of novel instances derived from the set. We analyze the objects at the part level and treat the anisotropic part scales as a shape style. The coanalysis then allows style transfer to synthesize new objects. The key to coanalysis is part correspondence, where a major challenge is the handling of large style variations and diverse geometric content in the shape set. We propose stylecontent separation as a means to address this challenge. Specifically, we define a correspondencefree style signature for style clustering. We show that confining analysis to within a style cluster facilitates tasks such as cosegmentation, content classification, and deformationdriven part correspondence. With part correspondence between each pair of shapes in the set, style transfer can be easily performed. We demonstrate our analysis and synthesis results on several sets of manmade objects with style and content variations.