Results 1 - 10
of
378
A collapsed variational bayesian inference algorithm for latent dirichlet allocation
- In NIPS
"... Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been fo ..."
Abstract
-
Cited by 137 (8 self)
- Add to MetaCart
(Show Context)
Latent Dirichlet allocation (LDA) is a Bayesian network that has recently gained much popularity in applications ranging from document modeling to computer vision. Due to the large scale nature of these applications, current inference procedures like variational Bayes and Gibbs sampling have been found lacking. In this paper we propose the collapsed variational Bayesian inference algorithm for LDA, and show that it is computationally efficient, easy to implement and significantly more accurate than standard variational Bayesian inference for LDA. 1
The nested chinese restaurant process and bayesian inference of topic hierarchies
, 2007
"... We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitely-deep, infinitely-branching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Spe ..."
Abstract
-
Cited by 128 (15 self)
- Add to MetaCart
(Show Context)
We present the nested Chinese restaurant process (nCRP), a stochastic process which assigns probability distributions to infinitely-deep, infinitely-branching trees. We show how this stochastic process can be used as a prior distribution in a Bayesian nonparametric model of document collections. Specifically, we present an application to information retrieval in which documents are modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a corpus of documents, a posterior inference algorithm finds an approximation to a posterior distribution over trees, topics and allocations of words to levels of the tree. We demonstrate this algorithm on collections of scientific abstracts from several journals. This model exemplifies a recent trend in statistical machine learning—the use of Bayesian nonparametric methods to infer distributions on flexible data structures.
Relational topic models for document networks
- In Proc. of Conf. on AI and Statistics (AISTATS
"... We develop the relational topic model (RTM), a model of documents and the links between them. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them ..."
Abstract
-
Cited by 114 (5 self)
- Add to MetaCart
(Show Context)
We develop the relational topic model (RTM), a model of documents and the links between them. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and learning algorithms based on variational methods and evaluate the predictive performance of the RTM for large networks of scientific abstracts and web documents. 1
Nonparametric Latent Feature Models for Link Prediction
"... As the availability and importance of relational data—such as the friendships summarized on a social networking website—increases, it becomes increasingly important to have good models for such data. The kinds of latent structure that have been considered for use in predicting links in such networks ..."
Abstract
-
Cited by 106 (1 self)
- Add to MetaCart
(Show Context)
As the availability and importance of relational data—such as the friendships summarized on a social networking website—increases, it becomes increasingly important to have good models for such data. The kinds of latent structure that have been considered for use in predicting links in such networks have been relatively limited. In particular, the machine learning community has focused on latent class models, adapting Bayesian nonparametric methods to jointly infer how many latent classes there are while learning which entities belong to each class. We pursue a similar approach with a richer kind of latent variable—latent features—using a Bayesian nonparametric approach to simultaneously infer the number of features at the same time we learn which entities have each feature. Our model combines these inferred features with known covariates in order to perform link prediction. We demonstrate that the greater expressiveness of this approach allows us to improve performance on three datasets. 1
SPECTRAL CLUSTERING AND THE HIGH-DIMENSIONAL STOCHASTIC BLOCKMODEL
- SUBMITTED TO THE ANNALS OF STATISTICS
"... Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the stru ..."
Abstract
-
Cited by 105 (7 self)
- Add to MetaCart
Networks or graphs can easily represent a diverse set of data sources that are characterized by interacting units or actors. Social networks, representing people who communicate with each other, are one example. Communities or clusters of highly connected actors form an essential feature in the structure of several empirical networks. Spectral clustering is a popular and computationally feasible method to discover these communities. The Stochastic Blockmodel (Holland, Laskey and Leinhardt, 1983) is a social network model with well defined communities; each node is a member of one community. For a network generated from the Stochastic Blockmodel, we bound the number of nodes “misclustered” by spectral clustering. The asymptotic results in this paper are the first clustering results that allow the number of clusters in the model to grow with the number of nodes, hence the name highdimensional. In order to study spectral clustering under the Stochastic Blockmodel, we first show that under the more general latent space model, the eigenvectors of the normalized graph Laplacian asymptotically converge to the eigenvectors of a “population” normalized graph Laplacian. Aside from the implication for spectral clustering, this provides insight into a graph visualization technique. Our method of studying the eigenvectors of random matrices is original.
Joint Latent Topic Models for Text and Citations
, 2008
"... In this work, we address the problem of joint modeling of text and citations in the topic modeling framework. We present two different models called the Pairwise-Link-LDA and the Link-LDA-PLSA models. The Pairwise-Link-LDA model combines the ideas of LDA [4] and Mixed Membership Block Stochastic Mod ..."
Abstract
-
Cited by 99 (11 self)
- Add to MetaCart
(Show Context)
In this work, we address the problem of joint modeling of text and citations in the topic modeling framework. We present two different models called the Pairwise-Link-LDA and the Link-LDA-PLSA models. The Pairwise-Link-LDA model combines the ideas of LDA [4] and Mixed Membership Block Stochastic Models [1] and allows modeling arbitrary link structure. However, the model is computationally expensive, since it involves modeling the presence or absence of a citation (link) between every pair of documents. The second model solves this problem by assuming that the link structure is a bipartite graph. As the name indicates, Link-PLSA-LDA model combines the LDA and PLSA models into a single graphical model. Our experiments on a subset of Citeseer data show that both these models are able to predict unseen data better than the baseline model of Erosheva and Lafferty [8], by capturing the notion of topical similarity between the contents of the cited and citing documents. Our experiments on two different data sets on the link prediction task show that the Link-PLSA-LDA model performs the best on the citation prediction task, while also remaining highly scalable. In addition, we also present some interesting visualizations generated by each of the models.
Learning to Discover Social Circles in Ego Networks
"... Our personal social networks are big and cluttered, and currently there is no good way to organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. ‘circles ’ on Google+, and ‘lists ’ on Facebook and Twitter), however they are laborious to cons ..."
Abstract
-
Cited by 95 (5 self)
- Add to MetaCart
(Show Context)
Our personal social networks are big and cluttered, and currently there is no good way to organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. ‘circles ’ on Google+, and ‘lists ’ on Facebook and Twitter), however they are laborious to construct and must be updated whenever a user’s network grows. We define a novel machine learning task of identifying users ’ social circles. We pose the problem as a node clustering problem on a user’s ego-network, a network of connections between her friends. We develop a model for detecting circles that combines network structure as well as user profile information. For each circle we learn its members and the circle-specific user profile similarity metric. Modeling node membership to multiple circles allows us to detect overlapping as well as hierarchically nested circles. Experiments show that our model accurately identifies circles on a diverse set of data from Facebook, Google+, and Twitter for all of which we obtain hand-labeled ground-truth. 1
MedLDA: Maximum Margin Supervised Topic Models for Regression and Classification
"... Supervised topic models utilize document’s side information for discovering predictive low dimensional representations of documents; and existing models apply likelihoodbased estimation. In this paper, we present a max-margin supervised topic model for both continuous and categorical response variab ..."
Abstract
-
Cited by 93 (27 self)
- Add to MetaCart
Supervised topic models utilize document’s side information for discovering predictive low dimensional representations of documents; and existing models apply likelihoodbased estimation. In this paper, we present a max-margin supervised topic model for both continuous and categorical response variables. Our approach, the maximum entropy discrimination latent Dirichlet allocation (MedLDA), utilizes the max-margin principle to train supervised topic models and estimate predictive topic representations that are arguably more suitable for prediction. We develop efficient variational methods for posterior inference and demonstrate qualitatively and quantitatively the advantages of MedLDA over likelihood-based topic models on movie review and 20 Newsgroups data sets. 1.
Relational learning via latent social dimensions, in 'KDD '09
- Proceedings di of the 15th ACM SIGKDD international ti conference on Knowledge
, 2009
"... Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. ..."
Abstract
-
Cited by 86 (28 self)
- Add to MetaCart
(Show Context)
Social media such as blogs, Facebook, Flickr, etc., presents data in a network format rather than classical IID distribution. To address the interdependency among data instances, relational learning has been proposed, and collective inference based on network connectivity is adopted for prediction. However, the connections in social media are often multi-dimensional. An actor can connect to another actor due to different factors, e.g., alumni, colleagues, living in the same city or sharing similar interest, etc. Collective inference normally does not differentiate these connections. In this work, we propose to extract latent social dimensions based on network information first, and then utilize them as features for discriminative learning. These social dimensions describe different affiliations of social actors hidden in the network, and the subsequent discriminative learning can automatically determine which affiliations are better aligned with the class labels. Such a scheme is preferred when multiple diverse relations are associated with the same network. We conduct extensive experiments on social media data (one from a real-world blog site and the other from a popular content sharing site). Our model outperforms representative relational learning methods based on collective inference, especially when few labeled data are available. The sensitivity of this model and its connection to existing methods are also carefully examined.