Results 1  10
of
310
PrivacyPreserving Data Mining
, 2000
"... A fruitful direction for future data mining research will be the development of techniques that incorporate privacy concerns. Specifically, we address the following question. Since the primary task in data mining is the development of models about aggregated data, can we develop accurate models with ..."
Abstract

Cited by 847 (3 self)
 Add to MetaCart
(Show Context)
A fruitful direction for future data mining research will be the development of techniques that incorporate privacy concerns. Specifically, we address the following question. Since the primary task in data mining is the development of models about aggregated data, can we develop accurate models without access to precise information in individual data records? We consider the concrete case of building a decisiontree classifier from tredning data in which the values of individual records have been perturbed. The resulting data records look very different from the original records and the distribution of data values is also very different from the original distribution. While it is not possible to accurately estimate original values in individual data records, we propose anovel reconstruction procedure to accurately estimate the distribution of original data values. By using these reconstructed distributions, we are able to build classifiers whose accuracy is comparable to the accuracy of classifiers built with the original data.
Automatic Subspace Clustering of High Dimensional Data
 Data Mining and Knowledge Discovery
, 2005
"... Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, enduser comprehensibility of the results, nonpresumption of any canonical data distribution, and insensitivity to the or ..."
Abstract

Cited by 726 (12 self)
 Add to MetaCart
(Show Context)
Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, enduser comprehensibility of the results, nonpresumption of any canonical data distribution, and insensitivity to the order of input records. We present CLIQUE, a clustering algorithm that satisfies each of these requirements. CLIQUE identifies dense clusters in subspaces of maximum dimensionality. It generates cluster descriptions in the form of DNF expressions that are minimized for ease of comprehension. It produces identical results irrespective of the order in which input records are presented and does not presume any specific mathematical form for data distribution. Through experiments, we show that CLIQUE efficiently finds accurate clusters in large high dimensional datasets.
Enhanced hypertext categorization using hyperlinks
, 1998
"... A major challenge in indexing unstructured hypertext databases is to automatically extract metadata that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profilebased routing and filtering. Therefore, an accurate classifier is ..."
Abstract

Cited by 454 (8 self)
 Add to MetaCart
A major challenge in indexing unstructured hypertext databases is to automatically extract metadata that enables structured search using topic taxonomies, circumvents keyword ambiguity, and improves the quality of search and profilebased routing and filtering. Therefore, an accurate classifier is an essential component of a hypertext database. Hyperlinks pose new problems not addressed in the extensive text classification literature. Links clearly contain highquality semantic clues that are lost upon a purely termbased classifier, but exploiting link information is nontrivial because it is noisy. Naive use of terms in the link neighborhood of a document can even degrade accuracy. Our contribution is to propose robust statistical models and a relaxation labeling technique for better classification by exploiting link information in a small neighborhood around documents. Our technique also adapts gracefully to the fraction of neighboring documents having known topics. We experimented with preclassified samples from Yahoo! â and the US Patent Database2. In previous work, we developed a text classifier that misclassified only 13 % of the documents in the wellknown Reuters benchmark; this was comparable to the best results ever obtained. This classifier misclassified 36 % of the patents, indicating that classifying hypertext can be more difficult than classifying text. Naively using terms in neighboring documents increased error to 38%; our hypertext classifier reduced it to 21%. Results with the Yahoo! sample were more dramatic: the text classifier showed 68% error, whereas our hypertext classifier reduced this to only 21%.
Mining highspeed data streams
, 2000
"... Categories and Subject ���������� � �¨�������������������������¦���¦����������¡¤�� ¡ � ¡����������������¦¡¤����§�£���� ..."
Abstract

Cited by 402 (10 self)
 Add to MetaCart
(Show Context)
Categories and Subject ���������� � �¨�������������������������¦���¦����������¡¤�� ¡ � ¡����������������¦¡¤����§�£����
Mining timechanging data streams
 IN PROC. OF THE 2001 ACM SIGKDD INTL. CONF. ON KNOWLEDGE DISCOVERY AND DATA MINING
, 2001
"... Most statistical and machinelearning algorithms assume that the data is a random sample drawn from a stationary distribution. Unfortunately, most of the large databases available for mining today violate this assumption. They were gathered over months or years, and the underlying processes genera ..."
Abstract

Cited by 337 (5 self)
 Add to MetaCart
Most statistical and machinelearning algorithms assume that the data is a random sample drawn from a stationary distribution. Unfortunately, most of the large databases available for mining today violate this assumption. They were gathered over months or years, and the underlying processes generating them changed during this time, sometimes radically. Although a number of algorithms have been proposed for learning timechanging concepts, they generally do not scale well to very large databases. In this paper we propose an efficient algorithm for mining decision trees from continuouslychanging data streams, based on the ultrafast VFDT decision tree learner. This algorithm, called CVFDT, stays current while making the most of old data by growing an alternative subtree whenever an old one becomes questionable, and replacing the old with the new when the new becomes more accurate. CVFDT learns a model which is similar in accuracy to the one that would be learned by reapplying VFDT to a moving window of examples every time a new example arrives, but with O(1) complexity per example, as opposed to O(w), where w is the size of the window. Experiments on a set of large timechanging data streams demonstrate the utility of this approach.
Approximation Algorithms for Projective Clustering
 Proceedings of the ACM SIGMOD International Conference on Management of data, Philadelphia
, 2000
"... We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w ..."
Abstract

Cited by 305 (22 self)
 Add to MetaCart
We consider the following two instances of the projective clustering problem: Given a set S of n points in R d and an integer k ? 0; cover S by k hyperstrips (resp. hypercylinders) so that the maximum width of a hyperstrip (resp., the maximum diameter of a hypercylinder) is minimized. Let w be the smallest value so that S can be covered by k hyperstrips (resp. hypercylinders), each of width (resp. diameter) at most w : In the plane, the two problems are equivalent. It is NPHard to compute k planar strips of width even at most Cw ; for any constant C ? 0 [50]. This paper contains four main results related to projective clustering: (i) For d = 2, we present a randomized algorithm that computes O(k log k) strips of width at most 6w that cover S. Its expected running time is O(nk 2 log 4 n) if k 2 log k n; it also works for larger values of k, but then the expected running time is O(n 2=3 k 8=3 log 4 n). We also propose another algorithm that computes a c...
Mining ConceptDrifting Data Streams Using Ensemble Classifiers
, 2003
"... Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two ch ..."
Abstract

Cited by 281 (37 self)
 Add to MetaCart
(Show Context)
Recently, mining data streams with concept drifts for actionable insights has become an important and challenging task for a wide range of applications including credit card fraud protection, target marketing, network intrusion detection, etc. Conventional knowledge discovery tools are facing two challenges, the overwhelming volume of the streaming data, and the concept drifts. In this paper, we propose a general framework for mining conceptdrifting data streams using weighted ensemble classifiers. We train an ensemble of classification models, such as C4.5, RIPPER, naive Bayesian, etc., from sequential chunks of the data stream. The classifiers in the ensemble are judiciously weighted based on their expected classification accuracy on the test data under the timeevolving environment. Thus, the ensemble approach improves both the efficiency in learning the model and the accuracy in performing classification. Our empirical study shows that the proposed methods have substantial advantage over singleclassifier approaches in prediction accuracy, and the ensemble framework is effective for a variety of classification models.
Constraintbased rule mining in large, dense databases
, 1999
"... Constraintbased rule miners find all rules in a given dataset meeting userspecified constraints such as minimum support and confidence. We describe a new algorithm that directly exploits all userspecified constraints including minimum support, minimum confidence, and a new constraint that ensures ..."
Abstract

Cited by 177 (3 self)
 Add to MetaCart
Constraintbased rule miners find all rules in a given dataset meeting userspecified constraints such as minimum support and confidence. We describe a new algorithm that directly exploits all userspecified constraints including minimum support, minimum confidence, and a new constraint that ensures every mined rule offers a predictive advantage over any of its simplifications. Our algorithm maintains efficiency even at low supports on data that is dense (e.g. relational data). Previous approaches such as Apriori and its variants exploit only the minimum support constraint, and as a result are ineffective on dense data due to a combinatorial explosion of “frequent itemsets”.
Fast Vertical Mining Using Diffsets
, 2001
"... A number of vertical mining algorithms have been proposed recently for association mining, which have shown to be very effective and usually outperform horizontal approaches. The main advantage of the vertical format is support for fast frequency counting via intersection operations on transaction i ..."
Abstract

Cited by 153 (5 self)
 Add to MetaCart
A number of vertical mining algorithms have been proposed recently for association mining, which have shown to be very effective and usually outperform horizontal approaches. The main advantage of the vertical format is support for fast frequency counting via intersection operations on transaction ids (tids) and automatic pruning of irrelevant data. The main problem with these approaches is when intermediate results of vertical tid lists become too large for memory, thus affecting the algorithm scalability.
A dataclustering algorithm on distributed memory multiprocessors.
 In LargeScale Parallel Data Mining, Lecture Notes in Artificial Intelligence,
, 2000
"... Abstract. To cluster increasingly massive data sets that are common today in data and text mining, we propose a parallel implementation of the kmeans clustering algorithm based on the message passing model. The proposed algorithm exploits the inherent dataparallelism in the kmeans algorithm. We a ..."
Abstract

Cited by 134 (1 self)
 Add to MetaCart
(Show Context)
Abstract. To cluster increasingly massive data sets that are common today in data and text mining, we propose a parallel implementation of the kmeans clustering algorithm based on the message passing model. The proposed algorithm exploits the inherent dataparallelism in the kmeans algorithm. We analytically show that the speedup and the scaleup of our algorithm approach the optimal as the number of data points increases. We implemented our algorithm on an IBM POWERparallel SP2 with a maximum of 16 nodes. On typical test data sets, we observe nearly linear relative speedups, for example, 15.62 on 16 nodes, and essentially linear scaleup in the size of the data set and in the number of clusters desired. For a 2 gigabyte test data set, our implementation drives the 16 node SP2 at more than 1.8 gigaflops.