Results 11  20
of
3,215
Convex Position Estimation in Wireless Sensor Networks
"... A method for estimating unknown node positions in a sensor network based exclusively on connectivityinduced constraints is described. Known peertopeer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem fo ..."
Abstract

Cited by 491 (0 self)
 Add to MetaCart
A method for estimating unknown node positions in a sensor network based exclusively on connectivityinduced constraints is described. Known peertopeer communication in the network is modeled as a set of geometric constraints on the node positions. The global solution of a feasibility problem for these constraints yields estimates for the unknown positions of the nodes in the network. Providing that the constraints are tight enough, simulation illustrates that this estimate becomes close to the actual node positions. Additionally, a method for placing rectangular bounds around the possible positions for all unknown nodes in the network is given. The area of the bounding rectangles decreases as additional or tighter constraints are included in the problem. Specific models are suggested and simulated for isotropic and directional communication, representative of broadcastbased and optical transmission respectively, though the methods presented are not limited to these simple cases.
Fading relay channels: Performance limits and spacetime signal design
 IEEE J. SELECT. AREAS COMMUN
, 2004
"... Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay ch ..."
Abstract

Cited by 436 (4 self)
 Add to MetaCart
(Show Context)
Cooperative diversity is a transmission technique where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination and relay terminals are each equipped with single antenna transceivers. We consider three different TDMAbased cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplifyandforward (AF) or decodeandforward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (secondorder in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity as well as a diversity pointofview) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) spacetime code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of colocated antennas as well as appropriate power control rules. Consequently spacetime codes designed for the case of colocated multiantenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.
Joint Channel Assignment and Routing for Throughput Optimization in Multiradio Wireless Mesh Networks
, 2005
"... Multihop infrastructure wireless mesh networks offer increased reliability, coverage and reduced equipment costs over their singlehop counterpart, wireless LANs. Equipping wireless routers with multiple radios further improves the capacity by transmitting over multiple radios simultaneously using o ..."
Abstract

Cited by 435 (0 self)
 Add to MetaCart
(Show Context)
Multihop infrastructure wireless mesh networks offer increased reliability, coverage and reduced equipment costs over their singlehop counterpart, wireless LANs. Equipping wireless routers with multiple radios further improves the capacity by transmitting over multiple radios simultaneously using orthogonal channels. Efficient channel assignment and routing is essential for throughput optimization of mesh clients. Efficient channel assignment schemes can greatly relieve the interference effect of closeby transmissions; effective routing schemes can alleviate potential congestion on any gateways to the Internet, thereby improving perclient throughput. Unlike previous heuristic approaches, we mathematically formulate the joint channel assignment and routing problem, taking into account the interference constraints, the number of channels in the network and the number of radios available at each mesh router. We then use this formulation to develop a solution for our problem that optimizes the overall network throughput subject to fairness constraints on allocation of scarce wireless capacity among mobile clients. We show that the performance of our algorithms is within a constant factor of that of any optimal algorithm for the joint channel assignment and routing problem. Our evaluation demonstrates that our algorithm can effectively exploit the increased number of channels and radios, and it performs much better than the theoretical worst case bounds.
Stimulating Cooperation in SelfOrganizing Mobile Ad Hoc Networks
 ACM/Kluwer Mobile Networks and Applications (MONET
, 2001
"... In military and rescue applications of mobile ad hoc networks, all the nodes belong to the same authority; therefore, they are motivated to cooperate in order to support the basic functions of the network. In this paper, we consider the case when each node is its own authority and tries to maximi ..."
Abstract

Cited by 394 (25 self)
 Add to MetaCart
(Show Context)
In military and rescue applications of mobile ad hoc networks, all the nodes belong to the same authority; therefore, they are motivated to cooperate in order to support the basic functions of the network. In this paper, we consider the case when each node is its own authority and tries to maximize the benefits it gets from the network. More precisely, we assume that the nodes are not willing to forward packets for the benefit of other nodes.
The Node Distribution of the Random Waypoint Mobility Model for Wireless Ad Hoc Networks
, 2003
"... The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closedform expression of this distribution and an indepth investigation ..."
Abstract

Cited by 372 (11 self)
 Add to MetaCart
(Show Context)
The random waypoint model is a commonly used mobility model in the simulation of ad hoc networks. It is known that the spatial distribution of network nodes moving according to this model is, in general, nonuniform. However, a closedform expression of this distribution and an indepth investigation is still missing. This fact impairs the accuracy of the current simulation methodology of ad hoc networks and makes it impossible to relate simulationbased performance results to corresponding analytical results. To overcome these problems, we present a detailed analytical study of the spatial node distribution generated by random waypoint mobility. More specifically, we consider a generalization of the model in which the pause time of the mobile nodes is chosen arbitrarily in each waypoint and a fraction of nodes may remain static for the entire simulation time. We show that the structure of the resulting distribution is the weighted sum of three independent components: the static, pause, and mobility component. This division enables us to understand how the models parameters influence the distribution. We derive an exact equation of the asymptotically stationary distribution for movement on a line segment and an accurate approximation for a square area. The good quality of this approximation is validated through simulations using various settings of the mobility parameters. In summary, this article gives a fundamental understanding of the behavior of the random waypoint model.
Gossipbased ad hoc routing
, 2002
"... Abstract—Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messa ges are propagated unnecessarily. We propose a gossipingbased approa ch, where each node forwards a message with some probability, to reduce the ov erhead of the routing p ..."
Abstract

Cited by 371 (4 self)
 Add to MetaCart
(Show Context)
Abstract—Many ad hoc routing protocols are based on some variant of flooding. Despite various optimizations, many routing messa ges are propagated unnecessarily. We propose a gossipingbased approa ch, where each node forwards a message with some probability, to reduce the ov erhead of the routing protocols. Gossiping exhibits bimodal behavio r in sufficiently large networks: in some executions, the gossip dies out quic kly and hardly any node gets the message; in the remaining executions, a sub stantial fraction of the nodes gets the message. The fraction of execution s in which most nodes get the message depends on the gossiping probability a nd the topology of the network. In the networks we have considered, using g ossiping probability between 0.6 and 0.8 suffices to ensure that almost every node gets the message in almost every execution. For large networ ks, this simple gossiping protocol uses up to 35 % fewer messages than flood ing, with improved performance. Gossiping can also be combined with va rious optimizations of flooding to yield further benefits. Simulations show that adding gossiping to AODV results in significant performance improv ement, even in networks as small as 150 nodes. We expect that the improvemen t should be even more significant in larger networks. I.
An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks
, 2003
"... A wireless network consisting of a large number of small sensors with lowpower transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to de ..."
Abstract

Cited by 370 (1 self)
 Add to MetaCart
A wireless network consisting of a large number of small sensors with lowpower transceivers can be an effective tool for gathering data in a variety of environments. The data collected by each sensor is communicated through the network to a single processing center that uses all reported data to determine characteristics of the environment or detect an event. The communication or message passing process must be designed to conserve the Hmited energy resources of the sensors. Clustering sensors into groups, so that sensors communicate information only to clusterheads and then the clusterheads communicate the aggregated information to the processing center, may save energy. In this paper, we propose a distributed, randomized clustering algorithm to organize the sensors in a wireless sensor network into clusters. We then extend this algorithm to generate a hierarchy of clusterheads and observe that the energy savings increase with the number of levels in the hierarchy. Results in stochastic geometry are used to derive solutions for the values of parameters of our algorithm that minimize the total energy spent in the network when all sensors report data through the clusterheads to the processing center.
A Network Information Theory for Wireless Communication: Scaling Laws and Optimal Operation
 IEEE Transactions on Information Theory
, 2002
"... How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions. ..."
Abstract

Cited by 369 (18 self)
 Add to MetaCart
(Show Context)
How much information can be carried over a wireless network with a multiplicity of nodes? What are the optimal strategies for information transmission and cooperation among the nodes? We obtain sharp information theoretic scaling laws under some conditions.
Dynamic Power Allocation and Routing for Time Varying Wireless Networks
 IEEE Journal on Selected Areas in Communications
, 2003
"... We consider dynamic routing and power allocation for a wireless network with time varying channels. The network consists of power constrained nodes which transmit over wireless links with adaptive transmission rates. Packets randomly enter the system at each node and wait in output queues to be tran ..."
Abstract

Cited by 355 (73 self)
 Add to MetaCart
We consider dynamic routing and power allocation for a wireless network with time varying channels. The network consists of power constrained nodes which transmit over wireless links with adaptive transmission rates. Packets randomly enter the system at each node and wait in output queues to be transmitted through the network to their destinations. We establish the capacity region of all rate matrices (# ij ) that the system can stably supportwhere (# ij ) represents the rate of traffic originating at node i and destined for node j. A joint routing and power allocation policy is developed which stabilizes the system and provides bounded average delay guarantees whenever the input rates are within this capacity region. Such performance holds for general arrival and channel state processes, even if these processes are unknown to the network controller. We then apply this control algorithm to an adhoc wireless network where channel variations are due to user mobility, and compare its performance with the GrossglauserTse relay model developed in [13].