Results 1 - 10
of
2,205
A theory for multiresolution signal decomposition : the wavelet representation
- IEEE Transaction on Pattern Analysis and Machine Intelligence
, 1989
"... Abstract-Multiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions ..."
Abstract
-
Cited by 3538 (12 self)
- Add to MetaCart
Abstract-Multiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions 2 ’ + ’ and 2jcan be extracted by decomposing this signal on a wavelet orthonormal basis of L*(R”). In LL(R), a wavelet orthonormal basis is a family of functions ( @ w (2’ ~-n)),,,“jEZt, which is built by dilating and translating a unique function t+r (xl. This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror lilters. For images, the wavelet representation differentiates several spatial orientations. We study the application of this representation to data compression in image coding, texture discrimination and fractal analysis. Index Terms-Coding, fractals, multiresolution pyramids, quadrature mirror filters, texture discrimination, wavelet transform. I I.
De-Noising By Soft-Thresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract
-
Cited by 1279 (14 self)
- Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. Our proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model.
Ideal spatial adaptation by wavelet shrinkage
- Biometrika
, 1994
"... With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic ad ..."
Abstract
-
Cited by 1269 (5 self)
- Add to MetaCart
With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic advantages over traditional linear estimation by nonadaptive kernels � however, it is a priori unclear whether such performance can be obtained by a procedure relying on the data alone. We describe a new principle for spatially-adaptive estimation: selective wavelet reconstruction. Weshowthatvariableknot spline ts and piecewise-polynomial ts, when equipped with an oracle to select the knots, are not dramatically more powerful than selective wavelet reconstruction with an oracle. We develop a practical spatially adaptive method, RiskShrink, which works by shrinkage of empirical wavelet coe cients. RiskShrink mimics the performance of an oracle for selective wavelet reconstruction as well as it is possible to do so. A new inequality inmultivariate normal decision theory which wecallthe oracle inequality shows that attained performance di ers from ideal performance by at most a factor 2logn, where n is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variable-knot spline methods equipped with an oracle. In contrast, it is unknown how or if piecewise polynomial methods could be made to function this well when denied access to an oracle and forced to rely on data alone.
Adapting to unknown smoothness via wavelet shrinkage
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract
-
Cited by 1006 (18 self)
- Add to MetaCart
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothness-adaptive: if the unknown function contains jumps, the reconstruction (essentially) does also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothness-adaptive: it is near-minimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods -- kernels, splines, and orthogonal series estimates -- even with optimal choices of the smoothing parameter, would be unable to perform
Automatic Musical Genre Classification Of Audio Signals
- IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING
, 2002
"... ... describe music. They are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music information retrieval. Genre categorization for audio has traditionally been performed manually. A particular musical genre is characterized by sta ..."
Abstract
-
Cited by 829 (35 self)
- Add to MetaCart
(Show Context)
... describe music. They are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music information retrieval. Genre categorization for audio has traditionally been performed manually. A particular musical genre is characterized by statistical properties related to the instrumentation, rhythmic structure and form of its members. In this work, algorithms for the automatic genre categorization of audio signals are described. More specifically, we propose a set of features for representing texture and instrumentation. In addition a novel set of features for representing rhythmic structure and strength is proposed. The performance of those feature sets has been evaluated by training statistical pattern recognition classifiers using real world audio collections. Based on the automatic hierarchical genre classification two graphical user interfaces for browsing and interacting with large audio collections have been developed.
Entropy-Based Algorithms For Best Basis Selection
- IEEE Transactions on Information Theory
, 1992
"... pretations (position, frequency, and scale), and we have experimented with feature-extraction methods that use best-basis compression for front-end complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear transformat ..."
Abstract
-
Cited by 675 (20 self)
- Add to MetaCart
pretations (position, frequency, and scale), and we have experimented with feature-extraction methods that use best-basis compression for front-end complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear transformation to represent a signal in its own best basis, but since the transformation is orthogonal once the basis is chosen, compression via the best-basis method is not drastically affected by noise: the noise energy in the transform values cannot exceed the noise energy in the original signal. Furthermore, we can use information cost functionals defined for signals with normalized energy, since all expansions in a given library will conserve energy. Since two expansions will have the same energy globally, it is not necessary to normalize expansions to compare their costs. This feature greatly enlarges the class of functionals usable by the method, speeds the best-basis search, and provides a geom
Factoring wavelet transforms into lifting steps
- J. FOURIER ANAL. APPL
, 1998
"... This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decompositio ..."
Abstract
-
Cited by 584 (8 self)
- Add to MetaCart
(Show Context)
This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is well-known to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We present here a self-contained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e, non-unitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a wavelet-like transform that maps integers to integers.
Shiftable Multi-scale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract
-
Cited by 562 (36 self)
- Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call "shiftability". In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. We explore "jointly shiftable" transforms that are simultaneously shiftable in more than one domain. Two examples of jointly shiftable transforms are designed and implemented: a one-dimensional tran...
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a ..."
Abstract
-
Cited by 539 (15 self)
- Add to MetaCart
(Show Context)
We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, in-place calculation of the wavelet transform. Several examples are included.