Results 1  10
of
70
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract

Cited by 242 (14 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse realworld networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large realworld networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “communitylike.” This behavior is not explained, even at a qualitative level, by any of the commonlyused network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are wellembeddable in a lowdimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography
, 2007
"... In a social network, nodes correspond to people or other social entities, and edges correspond to social links between them. In an effort to preserve privacy, the practice of anonymization replaces names with meaningless unique identifiers. We describe a family of attacks such that even from a singl ..."
Abstract

Cited by 212 (2 self)
 Add to MetaCart
(Show Context)
In a social network, nodes correspond to people or other social entities, and edges correspond to social links between them. In an effort to preserve privacy, the practice of anonymization replaces names with meaningless unique identifiers. We describe a family of attacks such that even from a single anonymized copy of a social network, it is possible for an adversary to learn whether edges exist or not between specific targeted pairs of nodes.
Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract

Cited by 198 (17 self)
 Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large realworld networks, ranging from traditional and online social networks, to technological and information networks and
Clustering Partially Observed Graphs via Convex Optimization
"... This paper considers the problem of clustering a partially observed unweighted graph – i.e. one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nod ..."
Abstract

Cited by 42 (12 self)
 Add to MetaCart
(Show Context)
This paper considers the problem of clustering a partially observed unweighted graph – i.e. one where for some node pairs we know there is an edge between them, for some others we know there is no edge, and for the remaining we do not know whether or not there is an edge. We want to organize the nodes into disjoint clusters so that there is relatively dense (observed) connectivity within clusters, and sparse across clusters. We take a novel yet natural approach to this problem, by focusing on finding the clustering that minimizes the number of ”disagreements ”i.e. the sum of the number of (observed) missing edges within clusters, and (observed) present edges across clusters. Our algorithm uses convex optimization; its basis is a reduction of disagreement minimization to the problem of recovering an (unknown) lowrank matrix and an (unknown) sparse matrix from their partially observed sum. We show that our algorithm succeeds under certain natural assumptions on the optimal clustering and its disagreements. Our results significantly strengthen existing matrix splitting results for the special case of our clustering problem. Our results directly enhance solutions to the problem of Correlation Clustering (Bansal et al., 2002) with partial observations.
An ldabased community structure discovery approach for largescale social networks
 In Intelligence and Security Informatics, 2007 IEEE
, 2007
"... ..."
(Show Context)
Dynamics of Large Networks
, 2008
"... A basic premise behind the study of large networks is that interaction leads to complex collective behavior. In our work we found very interesting and counterintuitive patterns for time evolving networks, which change some of the basic assumptions that were made in the past. We then develop models ..."
Abstract

Cited by 30 (0 self)
 Add to MetaCart
A basic premise behind the study of large networks is that interaction leads to complex collective behavior. In our work we found very interesting and counterintuitive patterns for time evolving networks, which change some of the basic assumptions that were made in the past. We then develop models that explain processes which govern the network evolution, fit such models to real networks, and use them to generate realistic graphs or give formal explanations about their properties. In addition, our work has a wide range of applications: it can help us spot anomalous graphs and outliers, forecast future graph structure and run simulations of network evolution. Another important aspect of our research is the study of “local ” patterns and structures of propagation in networks. We aim to identify building blocks of the networks and find the patterns of influence that these blocks have on information or virus propagation over the network. Our recent work included the study of the spread of influence in a large persontoperson
Graph nodes clustering with the sigmoid commutetime kernel: A . . .
 DATA & KNOWLEDGE ENGINEERING
, 2009
"... ..."
Clustering Social Networks
"... Abstract. Social networks are ubiquitous. The discovery of closeknit clusters in these networks is of fundamental and practical interest. Existing clustering criteria are limited in that clusters typically do not overlap, all vertices are clustered and/or external sparsity is ignored. We introduce ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Social networks are ubiquitous. The discovery of closeknit clusters in these networks is of fundamental and practical interest. Existing clustering criteria are limited in that clusters typically do not overlap, all vertices are clustered and/or external sparsity is ignored. We introduce a new criterion that overcomes these limitations by combining internal density with external sparsity in a natural way. An algorithm is given for provably finding the clusters, provided there is a sufficiently large gap between internal density and external sparsity. Experiments on real social networks illustrate the effectiveness of the algorithm. 1
Graph nodes clustering based on the commutetime kernel
 In Proceedings of the 11th PacificAsia Conference on Knowledge Discovery and Data Mining (PAKDD 2007). Lecture notes in Computer Science, LNCS
, 2007
"... This work presents a kernel method for clustering the nodes of a weighted, undirected, graph. The algorithm is based on a twostep procedure. First, the sigmoid commutetime kernel (KCT), providing a similarity measure between any couple of nodes by taking the indirect links into account, is compute ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
(Show Context)
This work presents a kernel method for clustering the nodes of a weighted, undirected, graph. The algorithm is based on a twostep procedure. First, the sigmoid commutetime kernel (KCT), providing a similarity measure between any couple of nodes by taking the indirect links into account, is computed from the adjacency matrix of the graph. Then, the nodes of the graph are clustered by performing a kernel kmeans or fuzzy kmeans on this CT kernel matrix. For this purpose, a new, simple, version of the kernel kmeans and the kernel fuzzy kmeans is introduced. The joint use of the CT kernel matrix and kernel clustering appears to be quite successful. Indeed, this methodology provides good results, outperforming the spherical kmeans, on a document clustering problem involving the newsgroups database. 1
Graph clustering with network structure indices
, 2007
"... Graph clustering has become ubiquitous in the study of relational data sets. We examine two simple algorithms: a new graphical adaptation of the kmedoids algorithm and the GirvanNewman method based on edge betweenness centrality. We show that they can be effective at discovering the latent groups ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
(Show Context)
Graph clustering has become ubiquitous in the study of relational data sets. We examine two simple algorithms: a new graphical adaptation of the kmedoids algorithm and the GirvanNewman method based on edge betweenness centrality. We show that they can be effective at discovering the latent groups or communities that are defined by the link structure of a graph. However, both approaches rely on prohibitively expensive computations, given the size of modern relational data sets. Network structure indices (NSIs) are a proven technique for indexing network structure and efficiently finding short paths. We show how incorporating NSIs into these graph clustering algorithms can overcome these complexity limitations. We also present promising quantitative and qualitative evaluations of the modified algorithms on synthetic and real data sets. 1.