Results 1  10
of
94
Dependently Typed Functional Programs and their Proofs
, 1999
"... Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs ..."
Abstract

Cited by 85 (13 self)
 Add to MetaCart
Research in dependent type theories [ML71a] has, in the past, concentrated on its use in the presentation of theorems and theoremproving. This thesis is concerned mainly with the exploitation of the computational aspects of type theory for programming, in a context where the properties of programs may readily be specified and established. In particular, it develops technology for programming with dependent inductive families of datatypes and proving those programs correct. It demonstrates the considerable advantage to be gained by indexing data structures with pertinent characteristic information whose soundness is ensured by typechecking, rather than human effort. Type theory traditionally presents safe and terminating computation on inductive datatypes by means of elimination rules which serve as induction principles and, via their associated reduction behaviour, recursion operators [Dyb91]. In the programming language arena, these appear somewhat cumbersome and give rise to unappealing code, complicated by the inevitable interaction between case analysis on dependent types and equational reasoning on their indices which must appear explicitly in the terms. Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of
Containers  Constructing Strictly Positive Types
, 2004
"... ... with disjoint coproducts and initial algebras of container functors (the categorical analogue of Wtypes) — and then establish that nested strictly positive inductive and coinductive types, which we call strictly positive types, exist in any MartinLöf category. Central to our development are t ..."
Abstract

Cited by 85 (28 self)
 Add to MetaCart
... with disjoint coproducts and initial algebras of container functors (the categorical analogue of Wtypes) — and then establish that nested strictly positive inductive and coinductive types, which we call strictly positive types, exist in any MartinLöf category. Central to our development are the notions of containers and container functors, introduced in Abbott, Altenkirch, and Ghani (2003a). These provide a new conceptual analysis of data structures and polymorphic functions by exploiting dependent type theory as a convenient way to define constructions in MartinLöf categories. We also show that morphisms between containers can be full and faithfully interpreted as polymorphic functions (i.e. natural transformations) and that, in the presence of Wtypes, all strictly positive types (including nested inductive and coinductive types) give rise to containers.
A functional quantum programming language
 In: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
, 2005
"... This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are inte ..."
Abstract

Cited by 70 (12 self)
 Add to MetaCart
(Show Context)
This thesis introduces the language QML, a functional language for quantum computations on finite types. QML exhibits quantum data and control structures, and integrates reversible and irreversible quantum computations. The design of QML is guided by the categorical semantics: QML programs are interpreted by morphisms in the category FQC of finite quantum computations, which provides a constructive operational semantics of irreversible quantum computations, realisable as quantum circuits. The quantum circuit model is also given a formal categorical definition via the category FQC. QML integrates reversible and irreversible quantum computations in one language, using first order strict linear logic to make weakenings, which may lead to the collapse of the quantum wavefunction, explicit. Strict programs are free from measurement, and hence preserve superpositions and entanglement. A denotational semantics of QML programs is presented, which maps QML terms
Generic programming within dependently typed programming
 In Generic Programming, 2003. Proceedings of the IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl
, 2003
"... Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by prog ..."
Abstract

Cited by 66 (8 self)
 Add to MetaCart
(Show Context)
Abstract We show how higher kinded generic programming can be represented faithfully within a dependently typed programming system. This development has been implemented using the Oleg system. The present work can be seen as evidence for our thesis that extensions of type systems can be done by programming within a dependently typed language, using data as codes for types. 1.
Indexed InductionRecursion
, 2001
"... We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in ..."
Abstract

Cited by 51 (17 self)
 Add to MetaCart
We give two nite axiomatizations of indexed inductiverecursive de nitions in intuitionistic type theory. They extend our previous nite axiomatizations of inductiverecursive de nitions of sets to indexed families of sets and encompass virtually all de nitions of sets which have been used in intuitionistic type theory. The more restricted of the two axiomatization arises naturally by considering indexed inductiverecursive de nitions as initial algebras in slice categories, whereas the other admits a more general and convenient form of an introduction rule.
Indexed Containers
"... Abstract. The search for an expressive calculus of datatypes in which canonical algorithms can be easily written and proven correct has proved to be an enduring challenge to the theoretical computer science community. Approaches such as polynomial types, strictly positive types and inductive types h ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
(Show Context)
Abstract. The search for an expressive calculus of datatypes in which canonical algorithms can be easily written and proven correct has proved to be an enduring challenge to the theoretical computer science community. Approaches such as polynomial types, strictly positive types and inductive types have all met with some success but they tend not to cover important examples such as types with variable binding, types with constraints, nested types, dependent types etc. In order to compute with such types, we generalise from the traditional treatment of types as free standing entities to families of types which have some form of indexing. The hallmark of such indexed types is that one must usually compute not with an individual type in the family, but rather with the whole family simultaneously. We implement this simple idea by generalising our previous work on containers to what we call indexed containers and show that they cover a number of sophisticated datatypes and, indeed, other computationally interesting structures such as the refinement calculus and interaction structures. Finally, and rather surprisingly, the extra structure inherent in indexed containers simplifies the theory of containers and thereby allows for a much richer and more expressive calculus. 1
The Gentle Art of Levitation
"... We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a de ..."
Abstract

Cited by 31 (8 self)
 Add to MetaCart
We present a closed dependent type theory whose inductive types are given not by a scheme for generative declarations, but by encoding in a universe. Each inductive datatype arises by interpreting its description—a firstclass value in a datatype of descriptions. Moreover, the latter itself has a description. Datatypegeneric programming thus becomes ordinary programming. We show some of the resulting generic operations and deploy them in particular, useful ways on the datatype of datatype descriptions itself. Surprisingly this apparently selfsupporting setup is achievable without paradox or infinite regress. 1.
Focusing on binding and computation
 In IEEE Symposium on Logic in Computer Science
, 2008
"... ..."
(Show Context)
Exploring the regular tree types
 In Types for Proofs and Programs
, 2004
"... Abstract. In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s inbuilt equality at each type, taking a complementary approach to that of Benke, Dyb ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we use the Epigram language to define the universe of regular tree types—closed under empty, unit, sum, product and least fixpoint. We then present a generic decision procedure for Epigram’s inbuilt equality at each type, taking a complementary approach to that of Benke, Dybjer and Jansson [7]. We also give a generic definition of map, taking our inspiration from Jansson and Jeuring [21]. Finally, we equip the regular universe with the partial derivative which can be interpreted functionally as Huet’s notion of ‘zipper’, as suggested by McBride in [27] and implemented (without the fixpoint case) in Generic Haskell by Hinze, Jeuring and Löh [18]. We aim to show through these examples that generic programming can be ordinary programming in a dependently typed language. 1