Results 1 - 10
of
979
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
- In IEEE Workshop on Stereo and Multi-Baseline Vision,
, 2001
"... Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame ..."
Abstract
-
Cited by 1546 (22 self)
- Add to MetaCart
(Show Context)
Abstract Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.
Multimodality Image Registration by Maximization of Mutual Information
- IEEE TRANSACTIONS ON MEDICAL IMAGING
, 1997
"... A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or in ..."
Abstract
-
Cited by 791 (10 self)
- Add to MetaCart
(Show Context)
A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence and no limiting constraints are imposed on the image content of the modalities involved. The accuracy of the MI criterion is validated for rigid body registration of computed tomography (CT), magnetic resonance (MR), and photon emission tomography (PET) images by comparison with the stereotactic registration solution, while robustness is evaluated with respect to implementation issues, such as interpolation and optimization, and image content, including partial overlap and image degradation. Our results demonstrate that subvoxel accuracy with respect to the stereotactic reference solution can be achieved completely automatically and without any prior segmentation, feature extraction, or other preprocessing steps which makes this method very well suited for clinical applications.
Image registration methods: a survey.
, 2003
"... Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrical ..."
Abstract
-
Cited by 760 (10 self)
- Add to MetaCart
(Show Context)
Abstract This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas. q
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract
-
Cited by 515 (19 self)
- Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Another important observation is Parseval's theorem, which specifies that the Fourier transform preserves the Euclidean distance in the time or frequency domain. Having thus mapped sequences to a lower-dimensionality space by using only the first few Fourier coe cients, we use R-trees to index the sequences and e ciently answer similarity queries. We provide experimental results which show that our method is superior to search based on sequential scanning. Our experiments show that a few coefficients (1-3) are adequate to provide good performance. The performance gain of our method increases with the number and length of sequences.
A Feature-Based Algorithm for Detecting and Classifying Scene Breaks
"... We describe a new approach to the detection and classification of scene breaks in video sequences. Our method can detect and classify a variety of scene breaks, including cuts, fades, dissolves and wipes, even in sequences involving signi cant motion. We detect the appearance of intensity edges that ..."
Abstract
-
Cited by 243 (2 self)
- Add to MetaCart
We describe a new approach to the detection and classification of scene breaks in video sequences. Our method can detect and classify a variety of scene breaks, including cuts, fades, dissolves and wipes, even in sequences involving signi cant motion. We detect the appearance of intensity edges that are distant from edges in the previous frame. A global motion computation is used to handle camera or object motion. The algorithm we propose withstands JPEG and MPEG artifacts, even at very high compression rates. Experimental evidence demonstrates that our method can detect and classify scene breaks that are difficult to detect with previous approaches. An initial implementation runs at approximately 2 frames per second on a Sun workstation.
A Pyramid Approach to Sub-Pixel Registration Based on Intensity
, 1998
"... We present an automatic sub-pixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (2-D) or volumes (3-D). It uses an explicit spline representation of the images in conjunction with spline processing, and ..."
Abstract
-
Cited by 237 (18 self)
- Add to MetaCart
(Show Context)
We present an automatic sub-pixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (2-D) or volumes (3-D). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for non-linear least-square optimization. The geometric deformation model is a global 3-D affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intra-modality Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) data. We conclude that the multi-resolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster.
Image Change Detection Algorithms: A Systematic Survey
- IEEE Transactions on Image Processing
, 2005
"... Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing. T ..."
Abstract
-
Cited by 236 (3 self)
- Add to MetaCart
(Show Context)
Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing. This paper presents a systematic survey of the common processing steps and core decision rules in modern change detection algorithms, including significance and hypothesis testing, predictive models, the shading model, and background modeling. We also discuss important preprocessing methods, approaches to enforcing the consistency of the change mask, and principles for evaluating and comparing the performance of change detection algorithms. It is hoped that our classification of algorithms into a relatively small number of categories will provide useful guidance to the algorithm designer.
A Real-time Face Tracker”,
- Proceedings of IEEE Workshop on Applications of Computer Vision,
, 1996
"... ..."
(Show Context)
Numerical methods for image registration
, 2004
"... In this paper we introduce a new framework for image registration. Our formulation is based on consistent discretization of the optimization problem coupled with a multigrid solution of the linear system which evolve in a Gauss-Newton iteration. We show that our discretization is h-elliptic independ ..."
Abstract
-
Cited by 209 (29 self)
- Add to MetaCart
(Show Context)
In this paper we introduce a new framework for image registration. Our formulation is based on consistent discretization of the optimization problem coupled with a multigrid solution of the linear system which evolve in a Gauss-Newton iteration. We show that our discretization is h-elliptic independent of parameter choice and therefore a simple multigrid implementation can be used. To overcome potential large nonlinearities and to further speed up computation, we use a multilevel continuation technique. We demonstrate the efficiency of our method on a realistic highly nonlinear registration problem. 1 Introduction and problem setup Image registration is one of today’s challenging image processing problems. Given a so-called reference R and a so-called template image T, the basic idea is to find a “reasonable ” transformation such that a transformed version of the template image becomes “similar ” to the reference image. Image registration