Results 1  10
of
76
Convergent Treereweighted Message Passing for Energy Minimization
 ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract

Cited by 491 (16 self)
 Add to MetaCart
Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy. However, the algorithm is not guaranteed to increase this bound it may actually go down. In addition, TRW does not always converge. We develop a modification of this algorithm which we call sequential treereweighted message passing. Its main property is that the bound is guaranteed not to decrease. We also give a weak tree agreement condition which characterizes local maxima of the bound with respect to TRW algorithms. We prove that our algorithm has a limit point that achieves weak tree agreement. Finally, we show that our algorithm requires half as much memory as traditional message passing approaches. Experimental results demonstrate that on certain synthetic and real problems our algorithm outperforms both the ordinary belief propagation and treereweighted algorithm in [33]. In addition, on stereo problems with Potts interactions we obtain a lower energy than graph cuts.
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 436 (6 self)
 Add to MetaCart
(Show Context)
A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads to a compact representation of objects so that similarity of objects can be estimated from their compact sketches, and also leads to efficient algorithms for approximate nearest neighbor search and clustering. Minwise independent permutations provide an elegant construction of such a locality sensitive hashing scheme for a collection of subsets with the set similarity measure sim(A, B) = A∩B A∪B . We show that rounding algorithms for LPs and SDPs used in the context of approximation algorithms can be viewed as locality sensitive hashing schemes for several interesting collections of objects. Based on this insight, we construct new locality sensitive hashing schemes for: 1. A collection of vectors with the distance between ⃗u and ⃗v measured by θ(⃗u,⃗v)/π, where θ(⃗u,⃗v) is the angle between ⃗u and ⃗v. This yields a sketching scheme for estimating the cosine similarity measure between two vectors, as well as a simple alternative to minwise independent permutations for estimating set similarity. 2. A collection of distributions on n points in a metric space, with distance between distributions measured by the Earth Mover Distance (EMD), (a popular distance measure in graphics and vision). Our hash functions map distributions to points in the metric space such that, for distributions P and Q,
A Tight Bound on Approximating Arbitrary Metrics by Tree Metrics
 In Proceedings of the 35th Annual ACM Symposium on Theory of Computing
, 2003
"... In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; t ..."
Abstract

Cited by 317 (8 self)
 Add to MetaCart
(Show Context)
In this paper, we show that any n point metric space can be embedded into a distribution over dominating tree metrics such that the expected stretch of any edge is O(log n). This improves upon the result of Bartal who gave a bound of O(log n log log n). Moreover, our result is existentially tight; there exist metric spaces where any tree embedding must have distortion#sto n)distortion. This problem lies at the heart of numerous approximation and online algorithms including ones for group Steiner tree, metric labeling, buyatbulk network design and metrical task system. Our result improves the performance guarantees for all of these problems.
A Linear Programming Formulation for Global Inference in Natural Language Tasks
 In Proceedings of CoNLL2004
, 2004
"... The typical processing paradigm in natural language processing is the "pipeline" approach, where learners are being used at one level, their outcomes are being used as features for a second level of predictions and so one. In addition to accumulating errors, it is clear that the sequential ..."
Abstract

Cited by 149 (40 self)
 Add to MetaCart
(Show Context)
The typical processing paradigm in natural language processing is the "pipeline" approach, where learners are being used at one level, their outcomes are being used as features for a second level of predictions and so one. In addition to accumulating errors, it is clear that the sequential processing is a crude approximation to a process in which interactions occur across levels and down stream decisions often interact with previous decisions. This work develops a general...
MRF energy minimization and beyond via dual decomposition
 IN: IEEE PAMI. (2011
"... This paper introduces a new rigorous theoretical framework to address discrete MRFbased optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first ..."
Abstract

Cited by 107 (9 self)
 Add to MetaCart
(Show Context)
This paper introduces a new rigorous theoretical framework to address discrete MRFbased optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and we demonstrate the extreme generality and flexibility of such an approach. We thus show that, by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend stateoftheart messagepassing methods, 2) optimize very tight LPrelaxations to MRF optimization, 3) and take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g, graphcut based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.
Approximate labeling via graphcuts based on linear programming
 In Pattern Analysis and Machine Intelligence
, 2007
"... A new framework is presented for both understanding and developing graphcut based combinatorial algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of line ..."
Abstract

Cited by 74 (8 self)
 Add to MetaCart
(Show Context)
A new framework is presented for both understanding and developing graphcut based combinatorial algorithms suitable for the approximate optimization of a very wide class of MRFs that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of stateoftheart techniques like the αexpansion algorithm, which is included merely as a special case. Moreover, contrary to αexpansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, e.g. even for MRFs with nonmetric potentials. In addition, they are capable of providing perinstance suboptimality bounds in all occasions, including discrete Markov Random Fields with an arbitrary potential function. These bounds prove to be very tight in practice (i.e. very close to 1), which means that the resulting solutions are almost optimal. Our algorithms ’ effectiveness is demonstrated by presenting experimental results on a variety of low level vision tasks, such as stereo matching, image restoration, image completion and optical flow estimation, as well as on synthetic problems.
Approximation algorithms for the 0extension problem
 IN PROCEEDINGS OF THE TWELFTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 2001
"... In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between t ..."
Abstract

Cited by 70 (3 self)
 Add to MetaCart
(Show Context)
In the 0extension problem, we are given a weighted graph with some nodes marked as terminals and a semimetric on the set of terminals. Our goal is to assign the rest of the nodes to terminals so as to minimize the sum, over all edges, of the product of the edge’s weight and the distance between the terminals to which its endpoints are assigned. This problem generalizes the multiway cut problem of Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis and is closely related to the metric labeling problem introduced by Kleinberg and Tardos. We present approximation algorithms for 0Extension. In arbitrary graphs, we present a O(log k)approximation algorithm, k being the number of terminals. We also give O(1)approximation guarantees for weighted planar graphs. Our results are based on a natural metric relaxation of the problem, previously considered by Karzanov. It is similar in flavor to the linear programming relaxation of Garg, Vazirani, and Yannakakis for the multicut problem and similar to relaxations for other graph partitioning problems. We prove that the integrality ratio of the metric relaxation is at least c √ lg k for a positive c for infinitely many k. Our results improve some of the results of Kleinberg and Tardos and they further our understanding on how to use metric relaxations.
Performance vs Computational Efficiency for Optimizing Single and Dynamic MRFs: Setting the State of the Art with Primal Dual Strategies
"... In this paper we introduce a novel method to address minimization of static and dynamic MRFs. Our approach is based on principles from linear programming and, in particular, on primal dual strategies. It generalizes prior stateoftheart methods such as αexpansion, while it can also be used for ef ..."
Abstract

Cited by 68 (25 self)
 Add to MetaCart
In this paper we introduce a novel method to address minimization of static and dynamic MRFs. Our approach is based on principles from linear programming and, in particular, on primal dual strategies. It generalizes prior stateoftheart methods such as αexpansion, while it can also be used for efficiently minimizing NPhard problems with complex pairwise potential functions. Furthermore, it offers a substantial speedup of a magnitude ten over existing techniques, due to the fact that it exploits information coming not only from the original MRF problem, but also from a dual one. The proposed technique consists of recovering pair of solutions for the primal and the dual such that the gap between them is minimized. Therefore, it can also boost performance of dynamic MRFs, where one should expect that the new new pair of primaldual solutions is closed to the previous one. Promising results in a number of applications, and theoretical, as well as numerical comparisons with the state of the art demonstrate the extreme potentials of this approach.
On the optimality of treereweighted maxproduct message passing
 In UAI
, 2005
"... Treereweighted maxproduct (TRW) message passing [9] is a modified form of the ordinary maxproduct algorithm for attempting to find minimal energy configurations in Markov random field with cycles. For a TRW fixed point satisfying the strong tree agreement condition, the algorithm outputs a config ..."
Abstract

Cited by 68 (5 self)
 Add to MetaCart
Treereweighted maxproduct (TRW) message passing [9] is a modified form of the ordinary maxproduct algorithm for attempting to find minimal energy configurations in Markov random field with cycles. For a TRW fixed point satisfying the strong tree agreement condition, the algorithm outputs a configuration that is provably optimal. In this paper, we focus on the case of binary variables with pairwise couplings, and establish stronger properties of TRW fixed points that satisfy only the milder condition of weak tree agreement (WTA). First, we demonstrate how it is possible to identify part of the optimal solution—i.e., a provably optimal solution for a subset of nodes — without knowing a complete solution. Second, we show that for submodular functions, a WTA fixed point always yields a globally optimal solution. We establish that for binary variables, any WTA fixed point always achieves the global maximum of the linear programming relaxation underlying the TRW method. 1