Results 1 - 10
of
580
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
, 2001
"... We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions ..."
Abstract
-
Cited by 3485 (85 self)
- Add to MetaCart
(Show Context)
We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data. 1.
Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network
- IN PROCEEDINGS OF HLT-NAACL
, 2003
"... We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective ..."
Abstract
-
Cited by 693 (23 self)
- Add to MetaCart
We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective use of priors in conditional loglinear models, and (iv) fine-grained modeling of unknown word features. Using these ideas together, the resulting tagger gives a 97.24% accuracy on the Penn Treebank WSJ, an error reduction of 4.4% on the best previous single automatically learned tagging result.
Shallow Parsing with Conditional Random Fields
, 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract
-
Cited by 581 (8 self)
- Add to MetaCart
Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluation datasets and extensive comparison among methods. We show here how to train a conditional random field to achieve performance as good as any reported base noun-phrase chunking method on the CoNLL task, and better than any reported single model. Improved training methods based on modern optimization algorithms were critical in achieving these results. We present extensive comparisons between models and training methods that confirm and strengthen previous results on shallow parsing and training methods for maximum-entropy models.
Three Generative, Lexicalised Models for Statistical Parsing
, 1997
"... In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free gram- mar. We then extend the model to in- clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show that the parse ..."
Abstract
-
Cited by 570 (8 self)
- Add to MetaCart
In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free gram- mar. We then extend the model to in- clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show that the parser performs at 88.1/87.5% constituent precision/recall, an average improvement of 2.3% over (Collins 96).
TnT - A Statistical Part-Of-Speech Tagger
, 2000
"... Trigrams'n'Tags (TnT) is an efficient statistical part-of-speech tagger. Contrary to claims found elsewhere in the literature, we argue that a tagger based on Markov models performs at least as well as other current approaches, including the Maximum Entropy framework. A recent comparison h ..."
Abstract
-
Cited by 540 (5 self)
- Add to MetaCart
(Show Context)
Trigrams'n'Tags (TnT) is an efficient statistical part-of-speech tagger. Contrary to claims found elsewhere in the literature, we argue that a tagger based on Markov models performs at least as well as other current approaches, including the Maximum Entropy framework. A recent comparison has even shown that TnT performs significantly better for the tested corpora. We describe the basic model of TnT, the techniques used for smoothing and for handling unknown words. Furthermore, we present evaluations on two corpora.
A New Statistical Parser Based on Bigram Lexical Dependencies
, 1996
"... This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street Journal ..."
Abstract
-
Cited by 490 (4 self)
- Add to MetaCart
This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street Journal data show that the method per- forms at least as well as SPATTER (Magerman 95; Jelinek et al. 94), which has the best published results for a statistical parser on this task. The simplicity of the approach means the model trains on 40,000 sentences in under 15 minutes. With a beam search strategy parsing speed can be improved to over 200 sentences a minute with negligible loss in accuracy.
Using Maximum Entropy for Text Classification
, 1999
"... This paper proposes the use of maximum entropy techniques for text classification. Maximum entropy is a probability distribution estimation technique widely used for a variety of natural language tasks, such as language modeling, part-of-speech tagging, and text segmentation. The underlying principl ..."
Abstract
-
Cited by 326 (6 self)
- Add to MetaCart
This paper proposes the use of maximum entropy techniques for text classification. Maximum entropy is a probability distribution estimation technique widely used for a variety of natural language tasks, such as language modeling, part-of-speech tagging, and text segmentation. The underlying principle of maximum entropy is that without external knowledge, one should prefer distributions that are uniform. Constraints on the distribution, derived from labeled training data, inform the technique where to be minimally non-uniform. The maximum entropy formulation has a unique solution which can be found by the improved iterative scaling algorithm. In this paper, maximum entropy is used for text classification by estimating the conditional distribution of the class variable given the document. In experiments on several text datasets we compare accuracy to naive Bayes and show that maximum entropy is sometimes significantly better, but also sometimes worse. Much future work remains, but the re...
Online large-margin training of dependency parsers
- In Proc. ACL
, 2005
"... We present an effective training algorithm for linearly-scored dependency parsers that implements online largemargin multi-class training (Crammer and Singer, 2003; Crammer et al., 2003) on top of efficient parsing techniques for dependency trees (Eisner, 1996). The trained parsers achieve a competi ..."
Abstract
-
Cited by 306 (23 self)
- Add to MetaCart
We present an effective training algorithm for linearly-scored dependency parsers that implements online largemargin multi-class training (Crammer and Singer, 2003; Crammer et al., 2003) on top of efficient parsing techniques for dependency trees (Eisner, 1996). The trained parsers achieve a competitive dependency accuracy for both English and Czech with no language specific enhancements. 1
Early Results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons
, 2003
"... This paper presents a feature induction method for CRFs. Founded on the principle of constructing only those feature conjunctions that significantly increase loglikelihood, the approach builds on that of Della Pietra et al (1997), but is altered to work with conditional rather than joint probabiliti ..."
Abstract
-
Cited by 267 (12 self)
- Add to MetaCart
This paper presents a feature induction method for CRFs. Founded on the principle of constructing only those feature conjunctions that significantly increase loglikelihood, the approach builds on that of Della Pietra et al (1997), but is altered to work with conditional rather than joint probabilities, and with a mean-field approximation and other additional modifications that improve efficiency specifically for a sequence model. In comparison with traditional approaches, automated feature induction offers both improved accuracy and significant reduction in feature count; it enables the use of richer, higherorder Markov models, and offers more freedom to liberally guess about which atomic features may be relevant to a task