Results 1  10
of
152
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
(Show Context)
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized KullbackLeibler divergence. The monotonic convergence of both algorithms can be proven using an auxiliary function analogous to that used for proving convergence of the ExpectationMaximization algorithm. The algorithms can also be interpreted as diagonally rescaled gradient descent, where the rescaling factor is optimally chosen to ensure convergence.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 758 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Selection of relevant features and examples in machine learning
 ARTIFICIAL INTELLIGENCE
, 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract

Cited by 590 (2 self)
 Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area.
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
(Show Context)
We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our algorithm, and some variants of it, for classifying images of handwritten digits. The performance of our algorithm is close to, but not as good as, the performance of maximalmargin classifiers on the same problem, while saving significantly on computation time and programming effort. 1 Introduction One of the most influential developments in the theory of machine learning in the last few years is Vapnik's work on supp...
Ultraconservative Online Algorithms for Multiclass Problems
 Journal of Machine Learning Research
, 2001
"... In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and th ..."
Abstract

Cited by 313 (21 self)
 Add to MetaCart
(Show Context)
In this paper we study online classification algorithms for multiclass problems in the mistake bound model. The hypotheses we use maintain one prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarityscore between each prototype and the input instance and then sets the predicted label to be the index of the prototype achieving the highest similarity. To design and analyze the learning algorithms in this paper we introduce the notion of ultraconservativeness. Ultraconservative algorithms are algorithms that update only the prototypes attaining similarityscores which are higher than the score of the correct label's prototype. We start by describing a family of additive ultraconservative algorithms where each algorithm in the family updates its prototypes by finding a feasible solution for a set of linear constraints that depend on the instantaneous similarityscores. We then discuss a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a generalized notion of the margin for multiclass problems.
Logistic Regression, AdaBoost and Bregman Distances
, 2000
"... We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt al ..."
Abstract

Cited by 261 (44 self)
 Add to MetaCart
We give a unified account of boosting and logistic regression in which each learning problem is cast in terms of optimization of Bregman distances. The striking similarity of the two problems in this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt algorithms designed for one problem to the other. For both problems, we give new algorithms and explain their potential advantages over existing methods. These algorithms can be divided into two types based on whether the parameters are iteratively updated sequentially (one at a time) or in parallel (all at once). We also describe a parameterized family of algorithms which interpolates smoothly between these two extremes. For all of the algorithms, we give convergence proofs using a general formalization of the auxiliaryfunction proof technique. As one of our sequentialupdate algorithms is equivalent to AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our algorithms generalize easily to the multiclass case, and we contrast the new algorithms with iterative scaling. We conclude with a few experimental results with synthetic data that highlight the behavior of the old and newly proposed algorithms in different settings.
Tracking the best expert
 In Proceedings of the 12th International Conference on Machine Learning
, 1995
"... Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound th ..."
Abstract

Cited by 246 (20 self)
 Add to MetaCart
Abstract. We generalize the recent relative loss bounds for online algorithms where the additional loss of the algorithm on the whole sequence of examples over the loss of the best expert is bounded. The generalization allows the sequence to be partitioned into segments, and the goal is to bound the additional loss of the algorithm over the sum of the losses of the best experts for each segment. This is to model situations in which the examples change and different experts are best for certain segments of the sequence of examples. In the single segment case, the additional loss is proportional to log n, where n is the number of experts and the constant of proportionality depends on the loss function. Our algorithms do not produce the best partition; however the loss bound shows that our predictions are close to those of the best partition. When the number of segments is k +1and the sequence is of length ℓ, we can bound the additional loss of our algorithm over the best partition by O(k log n + k log(ℓ/k)). For the case when the loss per trial is bounded by one, we obtain an algorithm whose additional loss over the loss of the best partition is independent of the length of the sequence. The additional loss becomes O(k log n + k log(L/k)), where L is the loss of the best partition with k +1segments. Our algorithms for tracking the predictions of the best expert are simple adaptations of Vovk’s original algorithm for the single best expert case. As in the original algorithms, we keep one weight per expert, and spend O(1) time per weight in each trial.
On the Generalization Ability of Online Learning Algorithms
 IEEE Transactions on Information Theory
, 2001
"... In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary onlin ..."
Abstract

Cited by 184 (8 self)
 Add to MetaCart
(Show Context)
In this paper we show that online algorithms for classification and regression can be naturally used to obtain hypotheses with good datadependent tail bounds on their risk. Our results are proven without requiring complicated concentrationofmeasure arguments and they hold for arbitrary online learning algorithms. Furthermore, when applied to concrete online algorithms, our results yield tail bounds that in many cases are comparable or better than the best known bounds.
Adaptive game playing using multiplicative weights
 GAMES AND ECONOMIC BEHAVIOR
, 1999
"... We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the mult ..."
Abstract

Cited by 165 (17 self)
 Add to MetaCart
We present a simple algorithm for playing a repeated game. We show that a player using this algorithm suffers average loss that is guaranteed to come close to the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic and hold for any opponent. The algorithm, which uses the multiplicativeweight methods of Littlestone and Warmuth, is analyzed using the Kullback–Liebler divergence. This analysis yields a new, simple proof of the min–max theorem, as well as a provable method of approximately solving a game. A variant of our gameplaying algorithm is proved to be optimal in a very strong sense.
Relative Loss Bounds for Online Density Estimation with the Exponential Family of Distributions
 MACHINE LEARNING
, 2000
"... We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the n ..."
Abstract

Cited by 152 (14 self)
 Add to MetaCart
We consider online density estimation with a parameterized density from the exponential family. The online algorithm receives one example at a time and maintains a parameter that is essentially an average of the past examples. After receiving an example the algorithm incurs a loss, which is the negative loglikelihood of the example with respect to the past parameter of the algorithm. An oline algorithm can choose the best parameter based on all the examples. We prove bounds on the additional total loss of the online algorithm over the total loss of the best oline parameter. These relative loss bounds hold for an arbitrary sequence of examples. The goal is to design algorithms with the best possible relative loss bounds. We use a Bregman divergence to derive and analyze each algorithm. These divergences are relative entropies between two exponential distributions. We also use our methods to prove relative loss bounds for linear regression.