Results 1  10
of
942
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
(Show Context)
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored. AMS subject classifications: 82P10, 11Y05, 68Q10. 1 Introduction One of the first results in the mathematics of computation, which underlies the subsequent development of much of theoretical computer science, was the distinction between computable and ...
Faulttolerant quantum computation
 In Proc. 37th FOCS
, 1996
"... It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information i ..."
Abstract

Cited by 266 (5 self)
 Add to MetaCart
(Show Context)
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further difficulty is that inaccuracies in quantum state transformations throughout the computation accumulate, rendering long computations unreliable. However, these obstacles may not be as formidable as originally believed. For any quantum computation with t gates, we show how to build a polynomial size quantum circuit that tolerates O(1 / log c t) amounts of inaccuracy and decoherence per gate, for some constant c; the previous bound was O(1 /t). We do this by showing that operations can be performed on quantum data encoded by quantum errorcorrecting codes without decoding this data. 1.
TwoBit Gates Are Universal for Quantum Computation
, 1995
"... A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of ..."
Abstract

Cited by 182 (10 self)
 Add to MetaCart
A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of threebit gates, by analogy to the universality of the Toffoli threebit gate of classical reversible computing. Twobit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A "gearbox quantum computer" proposed here, based on the principles of atomic force microscopy, would permit the operation of such twobit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on EinsteinPodolskyRosen states and related entangled quantum states.
Concentrating partial entanglement by local operations
, 1995
"... If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partlyentangled pure states, one member of each pair being given to each observer; they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximall ..."
Abstract

Cited by 177 (6 self)
 Add to MetaCart
If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partlyentangled pure states, one member of each pair being given to each observer; they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximallyentangled pairs of particles, for example EinsteinPodolskyRosen singlets, similarly shared between the two observers. The concentration process asymptotically conserves entropy of entanglement—the von Neumann entropy of the partial density matrix seen by either observer—with the yield of singlets approaching, for large n, the base2 entropy of entanglement of the initial partlyentangled pure state. Conversely, any pure or mixed entangled state of two systems can be produced by two classicallycommunicating separated observers, drawing on a supply of singlets as their sole source of entanglement. Recent results in quantum information theory have shed light on the channel resources needed for faithful transmission of quantum states, and the extent to which these resources
Optimal lower bounds for quantum automata and random access codes
"... Consider the finite regular ¢¤£¦¥¨§�©�����©�� language ©������� �. In [3] it was shown that while this language is accepted by a deterministic finite automaton of ������ � size, any oneway quantum finite automaton (QFA) for it has ���¤ � £��� � ����£� � size. This was based on the fact that the e ..."
Abstract

Cited by 121 (9 self)
 Add to MetaCart
(Show Context)
Consider the finite regular ¢¤£¦¥¨§�©�����©�� language ©������� �. In [3] it was shown that while this language is accepted by a deterministic finite automaton of ������ � size, any oneway quantum finite automaton (QFA) for it has ���¤ � £��� � ����£� � size. This was based on the fact that the evolution of a QFA is required to be reversible. When arbitrary intermediate measurements are allowed, this intuition breaks down. Nonetheless, we show ���� � £�� a lower bound for such QFA ¢ £ for, thus also improving the previous bound. The improved bound is obtained from simple entropy arguments based on Holevo’s theorem [8]. This method also allows us to obtain an asymptotically op���������������� � timal bound for the dense quantum codes (random access codes) introduced in [3]. We then turn to Holevo’s theorem, and show that in typical situations, it may be replaced by a tighter and more transparent inprobability bound.
Consequences and Limits of Nonlocal Strategies
, 2010
"... Thispaperinvestigatesthepowersandlimitationsofquantum entanglementinthecontext of cooperative games of incomplete information. We give several examples of such nonlocal games where strategies that make use of entanglement outperform all possible classical strategies. One implication ofthese examples ..."
Abstract

Cited by 120 (20 self)
 Add to MetaCart
(Show Context)
Thispaperinvestigatesthepowersandlimitationsofquantum entanglementinthecontext of cooperative games of incomplete information. We give several examples of such nonlocal games where strategies that make use of entanglement outperform all possible classical strategies. One implication ofthese examplesis that entanglement canprofoundly affectthesoundness property of twoprover interactive proof systems. We then establish limits on the probability with which strategies making use of entanglement can win restricted types of nonlocal games. These upperbounds mayberegardedasgeneralizationsof Tsirelsontypeinequalities, which place bounds on the extent to which quantum information can allow for the violation of Bell inequalities. We also investigate the amount of entanglement required by optimal and nearly optimal quantum strategies forsome games.
Decoherence, einselection, and the quantum origins of the classical
 REVIEWS OF MODERN PHYSICS 75, 715. AVAILABLE ONLINE AT HTTP://ARXIV.ORG/ABS/QUANTPH/0105127
, 2003
"... The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) ..."
Abstract

Cited by 116 (1 self)
 Add to MetaCart
(Show Context)
The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environmentinduced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal "Schrödingercat states." The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information
Quantum mechanics as quantum information (and only a little more), Quantum Theory: Reconsideration of Foundations
, 2002
"... In this paper, I try once again to cause some goodnatured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or ..."
Abstract

Cited by 113 (8 self)
 Add to MetaCart
(Show Context)
In this paper, I try once again to cause some goodnatured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far from a strained application of the latest fad to a timehonored problem, this method holds promise precisely because a large part—but not all—of the structure of quantum theory has always concerned information. It is just that the physics community needs reminding. This paper, though takingquantph/0106166 as its core, corrects one mistake and offers several observations beyond the previous version. In particular, I identify one element of quantum mechanics that I would not label a subjective term in the theory—it is the integer parameter D traditionally ascribed to a quantum system via its Hilbertspace dimension. 1