Results 1 - 10
of
1,056
The Advantages of Evolutionary Computation
, 1997
"... Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific ..."
Abstract
-
Cited by 541 (6 self)
- Add to MetaCart
Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as the ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine. 1 Introduction Darwinian evolution is intrinsically a robust search and optimization mechanism. Evolved biota demonstrate optimized complex behavior at every level: the cell, the organ, the individual, and the population. The problems that biological species have solved are typified by chaos, chance, temporality, and nonlinear interactivities. These are also characteristics of problems that have proved to be especially intractable to classic methods of o...
Multiagent Systems: A Survey from a Machine Learning Perspective
- AUTONOMOUS ROBOTS
, 1997
"... Distributed Artificial Intelligence (DAI) has existed as a subfield of AI for less than two decades. DAI is ..."
Abstract
-
Cited by 372 (24 self)
- Add to MetaCart
(Show Context)
Distributed Artificial Intelligence (DAI) has existed as a subfield of AI for less than two decades. DAI is
Classifier fitness based on accuracy
- Evolutionary Computation
, 1995
"... In many classifier systems, the classifier strength parameter serves as a predictor of future payoff and as the classifier’s fitness for the genetic algorithm. We investigate a classifier system, XCS, in which each classifier maintains a prediction of expected payoff, but the classifier’s fitness is ..."
Abstract
-
Cited by 350 (17 self)
- Add to MetaCart
In many classifier systems, the classifier strength parameter serves as a predictor of future payoff and as the classifier’s fitness for the genetic algorithm. We investigate a classifier system, XCS, in which each classifier maintains a prediction of expected payoff, but the classifier’s fitness is given by a measure of the prediction’s accuracy. The system executes the genetic algorithm in niches defined by the match sets, instead of panmictically. These aspects of XCS result in its population tending to form a complete and accurate mapping X x A + P from inputs and actions to payoff predictions. Further, XCS tends to evolve classifiers that are maximally general, subject to an accuracy criterion. Besides introducing a new direction for classifier system research, these properties of XCS make it suitable for a wide range of reinforcement learning situations where generalization over states is desirable.
Evolutionary computation: Comments on the history and current state
- IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950’s. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and ..."
Abstract
-
Cited by 280 (0 self)
- Add to MetaCart
(Show Context)
Evolutionary computation has started to receive significant attention during the last decade, although the origins can be traced back to the late 1950’s. This article surveys the history as well as the current state of this rapidly growing field. We describe the purpose, the general structure, and the working principles of different approaches, including genetic algorithms (GA) [with links to genetic programming (GP) and classifier systems (CS)], evolution strategies (ES), and evolutionary programming (EP) by analysis and comparison of their most important constituents (i.e., representations, variation operators, reproduction, and selection mechanism). Finally, we give a brief overview on the manifold of application domains, although this necessarily must remain incomplete.
Strongly Typed Genetic Programming
- Evolutionary Computation
, 1994
"... Genetic programming is a powerful method for automatically generating computer programs via the process of natural selection [Koza 92]. However, it has the limitation known as "closure", i.e. that all the variables, constants, arguments for functions, and values returned from functions m ..."
Abstract
-
Cited by 278 (1 self)
- Add to MetaCart
Genetic programming is a powerful method for automatically generating computer programs via the process of natural selection [Koza 92]. However, it has the limitation known as "closure", i.e. that all the variables, constants, arguments for functions, and values returned from functions must be of the same data type. To correct this deficiency, we introduce a variation of genetic programming called "strongly typed" genetic programming(STGP). In STGP, variables, constants, arguments, and returned values can be of any data type with the provision that the data type for each such value be specified beforehand. This allows the initialization process and the genetic operators to only generate syntactically correct parse trees. Key concepts for STGP are generic functions, which are not true strongly typed functions but rather templates for classes of such functions, and generic data types, which are analogous. To illustrate STGP, we present four examples involving vector/matrix manip...
Competitive Environments Evolve Better Solutions for Complex Tasks
- GA93
, 1993
"... In the typical genetic algorithm experiment, the fitness function is constructed to be independent of the contents of the population to provide a consistent objective measure. Such objectivity entails significant knowledge about the environment which suggests either the problem has previously been s ..."
Abstract
-
Cited by 201 (19 self)
- Add to MetaCart
In the typical genetic algorithm experiment, the fitness function is constructed to be independent of the contents of the population to provide a consistent objective measure. Such objectivity entails significant knowledge about the environment which suggests either the problem has previously been solved or other non-evolutionary techniques may be more efficient. Furthermore, for many complex tasks an independent fitness function is either impractical or impossible to provide. In this paper, we demonstrate that competitive fitness functions, i.e. fitness functions that are dependent on the constituents of the population, can provide a more robust training environment than independent fitness functions. We describe three differing methods for competitive fitness, and discuss their respective advantages.
Tackling real-coded genetic algorithms: operators and tools for the behavioural analysis
- Arti Intelligence Reviews
, 1998
"... Abstract. Genetic algorithms play a significant role, as search techniques for handling com-plex spaces, in many fields such as artificial intelligence, engineering, robotic, etc. Genetic algorithms are based on the underlying genetic process in biological organisms and on the natural evolution prin ..."
Abstract
-
Cited by 198 (27 self)
- Add to MetaCart
(Show Context)
Abstract. Genetic algorithms play a significant role, as search techniques for handling com-plex spaces, in many fields such as artificial intelligence, engineering, robotic, etc. Genetic algorithms are based on the underlying genetic process in biological organisms and on the natural evolution principles of populations. These algorithms process a population of chromo-somes, which represent search space solutions, with three operations: selection, crossover and mutation. Under its initial formulation, the search space solutions are coded using the binary alphabet. However, the good properties related with these algorithms do not stem from the use of this alphabet; other coding types have been considered for the representation issue, such as real coding, which would seem particularly natural when tackling optimization problems of parameters with variables in continuous domains. In this paper we review the features of real-coded genetic algorithms. Different models of genetic operators and some mechanisms available for studying the behaviour of this type of genetic algorithms are revised and compared. Key words: genetic algorithms, real coding, continuous search spaces Abbreviations: GAs – genetic algorithms; BCGA – binary-coded genetic algorithm; RCGA – real-coded genetic algorithm
GenJam: A Genetic Algorithm for Generating Jazz Solos
, 1994
"... This paper describes GenJam, a genetic algorithm-based model of a novice jazz musician learning to improvise. GenJam maintains hierarchically related populations of melodic ideas that are mapped to specific notes through scales suggested by the chord progression being played. As GenJam plays its sol ..."
Abstract
-
Cited by 165 (4 self)
- Add to MetaCart
This paper describes GenJam, a genetic algorithm-based model of a novice jazz musician learning to improvise. GenJam maintains hierarchically related populations of melodic ideas that are mapped to specific notes through scales suggested by the chord progression being played. As GenJam plays its solos over the accompaniment of a standard rhythm section, a human mentor gives real-time feedback, which is used to derive fitness values for the individual measures and phrases. GenJam then applies various genetic operators to the populations to breed improved generations of ideas. 1 Introduction As with most problem-solving activities, musical tasks like composition, arranging and improvising involve a great deal of search. Composers search for the right chords to fit a melody or the right melody to fit a chord progression
Grammatical Evolution: Evolving Programs for an Arbitrary Language
- Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming
, 1998
"... . We describe a Genetic Algorithm that can evolve complete programs. Using a variable length linear genome to govern how a Backus Naur Form grammar definition is mapped to a program, expressions and programs of arbitrary complexity may be evolved. Other automatic programming methods are described, b ..."
Abstract
-
Cited by 158 (21 self)
- Add to MetaCart
. We describe a Genetic Algorithm that can evolve complete programs. Using a variable length linear genome to govern how a Backus Naur Form grammar definition is mapped to a program, expressions and programs of arbitrary complexity may be evolved. Other automatic programming methods are described, before our system, Grammatical Evolution, is applied to a symbolic regression problem. 1 Introduction Evolutionary Algorithms have been used with much success for the automatic generation of programs. In particular, Koza's [Koza 92] Genetic Programming has enjoyed considerable popularity and widespread use. Koza's method originally employed Lisp as its target language, and others still generate Lisp code. However, most experimenters generate a homegrown language, peculiar to their particular problem. Many other approaches to automatic program generation using Evolutionary Algorithms have also used Lisp as their target language. Lisp enjoys much popularity for a number of reasons, not least...