Results 1 - 10
of
179
Cloning-based context-sensitive pointer alias analysis using binary decision diagrams
- In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
, 2004
"... This paper presents the first scalable context-sensitive, inclusionbased pointer alias analysis for Java programs. Our approach to context sensitivity is to create a clone of a method for every context of interest, and run a context-insensitive algorithm over the expanded call graph to get context-s ..."
Abstract
-
Cited by 311 (16 self)
- Add to MetaCart
(Show Context)
This paper presents the first scalable context-sensitive, inclusionbased pointer alias analysis for Java programs. Our approach to context sensitivity is to create a clone of a method for every context of interest, and run a context-insensitive algorithm over the expanded call graph to get context-sensitive results. For precision, we generate a clone for every acyclic path through a program’s call graph, treating methods in a strongly connected component as a single node. Normally, this formulation is hopelessly intractable as a call graph often has 10 14 acyclic paths or more. We show that these exponential relations can be computed efficiently using binary decision diagrams (BDDs). Key to the scalability of the technique is a context numbering scheme that exposes the commonalities across contexts. We applied our algorithm to the most popular applications available on Sourceforge, and found that the largest programs, with hundreds of thousands of Java bytecodes, can be analyzed in under 20 minutes. This paper shows that pointer analysis, and many other queries and algorithms, can be described succinctly and declaratively using Datalog, a logic programming language. We have developed a system called bddbddb that automatically translates Datalog programs into highly efficient BDD implementations. We used this approach to develop a variety of context-sensitive algorithms including side effect analysis, type analysis, and escape analysis.
Parameterized Object Sensitivity for Points-to Analysis for Java
- ACM Trans. Softw. Eng. Methodol
, 2002
"... The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference variable or a reference object field. We present object sensitivity, a new form of context sensitivity for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a m ..."
Abstract
-
Cited by 165 (21 self)
- Add to MetaCart
(Show Context)
The goal of points-to analysis for Java is to determine the set of objects pointed to by a reference variable or a reference object field. We present object sensitivity, a new form of context sensitivity for flow-insensitive points-to analysis for Java. The key idea of our approach is to analyze a method separately for each of the object names that represent runtime objects on which this method may be invoked. To ensure flexibility and practicality, we propose a parameterization framework that allows analysis designers to control the tradeo#s between cost and precision in the object-sensitive analysis.
Refinement-based context-sensitive points-to analysis for Java
- PLDI’06
, 2006
"... ..."
(Show Context)
Effective typestate verification in the presence of aliasing
- In ACM International Symposium on Software Testing and Analysis
, 2006
"... This paper addresses the challenge of sound typestate verification, with acceptable precision, for real-world Java programs. We present a novel framework for verification of typestate properties, including several new techniques to precisely treat aliases without undue performance costs. In particul ..."
Abstract
-
Cited by 99 (8 self)
- Add to MetaCart
(Show Context)
This paper addresses the challenge of sound typestate verification, with acceptable precision, for real-world Java programs. We present a novel framework for verification of typestate properties, including several new techniques to precisely treat aliases without undue performance costs. In particular, we present a flowsensitive, context-sensitive, integrated verifier that utilizes a parametric abstract domain combining typestate and aliasing information. To scale to real programs without compromising precision, we present a staged verification system in which faster verifiers run as early stages which reduce the workload for later, more precise, stages. We have evaluated our framework on a number of real Java programs, checking correct API usage for various Java standard libraries. The results show that our approach scales to hundreds of thousands of lines of code, and verifies correctness for 93 % of the potential points of failure.
Points-to analysis using BDDs
- In Programming Language Design and Implementation (PLDI
, 2003
"... ..."
(Show Context)
Context-Sensitive Program Analysis as Database Queries
, 2005
"... Program analysis has been increasingly used in software engineering tasks such as auditing programs for security vulnerabilities and finding errors in general. Such tools often require analyses much more sophisticated than those traditionally used in compiler optimizations. In particular, context-se ..."
Abstract
-
Cited by 75 (7 self)
- Add to MetaCart
(Show Context)
Program analysis has been increasingly used in software engineering tasks such as auditing programs for security vulnerabilities and finding errors in general. Such tools often require analyses much more sophisticated than those traditionally used in compiler optimizations. In particular, context-sensitive pointer alias information is a prerequisite for any sound and precise analysis that reasons about uses of heap objects in a program. Context-sensitive analysis is challenging because there are over 10^14 contexts in a typical large program, even after recursive cycles are collapsed. Moreover, pointers cannot be resolved in general without analyzing the entire program. This paper
Thin slicing
- In PLDI
, 2007
"... personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires pri ..."
Abstract
-
Cited by 73 (2 self)
- Add to MetaCart
(Show Context)
personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
A staged static program analysis to improve the performance of runtime monitoring
- In Ernst [8
, 2007
"... Abstract. In runtime monitoring, a programmer specifies a piece of code to execute when a trace of events occurs during program execution. Our work is based on tracematches, an extension to AspectJ, which allows programmers to specify traces via regular expressions with free variables. In this paper ..."
Abstract
-
Cited by 53 (28 self)
- Add to MetaCart
(Show Context)
Abstract. In runtime monitoring, a programmer specifies a piece of code to execute when a trace of events occurs during program execution. Our work is based on tracematches, an extension to AspectJ, which allows programmers to specify traces via regular expressions with free variables. In this paper we present a staged static analysis which speeds up trace matching by reducing the required runtime instrumentation. The first stage is a simple analysis that rules out entire tracematches, just based on the names of symbols. In the second stage, a points-to analysis is used, along with a flow-insensitive analysis that eliminates instrumentation points with inconsistent variable bindings. In the third stage the points-to analysis is combined with a flow-sensitive analysis that also takes into consideration the order in which the symbols may execute. To examine the effectiveness of each stage, we experimented with a set of nine tracematches applied to the DaCapo benchmark suite. We found that about 25 % of the tracematch/benchmark combinations had instrumentation overheads greater than 10%. In these cases the first two stages work well for certain classes of tracematches, often leading to significant performance improvements. Somewhat surprisingly, we found the third, flow-sensitive, stage did not add any improvements. 1
Strictly Declarative Specification of Sophisticated Points-to Analyses
"... We present the Doop framework for points-to analysis of Java programs. Doop builds on the idea of specifying pointer analysis algorithms declaratively, using Datalog: a logicbased language for defining (recursive) relations. We carry the declarative approach further than past work by describing the ..."
Abstract
-
Cited by 52 (6 self)
- Add to MetaCart
(Show Context)
We present the Doop framework for points-to analysis of Java programs. Doop builds on the idea of specifying pointer analysis algorithms declaratively, using Datalog: a logicbased language for defining (recursive) relations. We carry the declarative approach further than past work by describing the full end-to-end analysis in Datalog and optimizing aggressively using a novel technique specifically targeting highly recursive Datalog programs. As a result, Doop achieves several benefits, including full order-of-magnitude improvements in runtime. We compare Doop with Lhoták and Hendren’s Paddle, which defines the state of the art for context-sensitive analyses. For the exact same logical points-to definitions (and, consequently, identical precision) Doop is more than 15x faster than Paddle for a 1-call-site sensitive analysis of the DaCapo benchmarks, with lower but still substantial speedups for other important analyses. Additionally, Doop scales to very precise analyses that are impossible with Paddle and Whaley et al.’s bddbddb, directly addressing open problems in past literature. Finally, our implementation is modular and can be easily configured to analyses with a wide range of characteristics, largely due to its declarativeness.
Context-sensitive points-to analysis: is it worth it
- In CC
, 2006
"... Abstract. We present the results of an empirical study evaluating the precision of subset-based points-to analysis with several variations of context sensitivity on Java benchmarks of significant size. We compare the use of call site strings as the context abstraction, object sensitivity, and the BD ..."
Abstract
-
Cited by 49 (2 self)
- Add to MetaCart
(Show Context)
Abstract. We present the results of an empirical study evaluating the precision of subset-based points-to analysis with several variations of context sensitivity on Java benchmarks of significant size. We compare the use of call site strings as the context abstraction, object sensitivity, and the BDD-based context-sensitive algorithm proposed by Zhu and Calman, and by Whaley and Lam. Our study includes analyses that context-sensitively specialize only pointer variables, as well as ones that also specialize the heap abstraction. We measure both characteristics of the points-to sets themselves, as well as effects on the precision of client analyses. To guide development of efficient analysis implementations, we measure the number of contexts, the number of distinct contexts, and the number of distinct points-to sets that arise with each context sensitivity variation. To evaluate precision, we measure the size of the call graph in terms of methods and edges, the number of devirtualizable call sites, and the number of casts statically provable to be safe. The results of our study indicate that object-sensitive analysis implementations are likely to scale better and more predictably than the other approaches; that objectsensitive analyses are more precise than comparable variations of the other approaches; that specializing the heap abstraction improves precision more than extending the length of context strings; and that the profusion of cycles in Java call graphs severely reduces precision of analyses that forsake context sensitivity in cyclic regions. 1