Results 1 - 10
of
184
Vivaldi: A Decentralized Network Coordinate System
- In SIGCOMM
, 2004
"... Large-scale Internet applications can benefit from an ability to predict round-trip times to other hosts without having to contact them first. Explicit measurements are often unattractive because the cost of measurement can outweigh the benefits of exploiting proximity information. Vivaldi is a simp ..."
Abstract
-
Cited by 602 (4 self)
- Add to MetaCart
(Show Context)
Large-scale Internet applications can benefit from an ability to predict round-trip times to other hosts without having to contact them first. Explicit measurements are often unattractive because the cost of measurement can outweigh the benefits of exploiting proximity information. Vivaldi is a simple, light-weight algorithm that assigns synthetic coordinates to hosts such that the distance between the coordinates of two hosts accurately predicts the communication latency between the hosts.
A Survey and Comparison of Peer-to-Peer Overlay Network Schemes
- IEEE COMMUNICATIONS SURVEYS AND TUTORIALS
, 2005
"... Over the Internet today, computing and communications environments are significantly more complex and chaotic than classical distributed systems, lacking any centralized organization or hierarchical control. There has been much interest in emerging Peer-to-Peer (P2P) network overlays because they ..."
Abstract
-
Cited by 302 (1 self)
- Add to MetaCart
Over the Internet today, computing and communications environments are significantly more complex and chaotic than classical distributed systems, lacking any centralized organization or hierarchical control. There has been much interest in emerging Peer-to-Peer (P2P) network overlays because they provide a good substrate for creating large-scale data sharing, content distribution and application-level multicast applications. These P2P networks try to provide a long list of features such as: selection of nearby peers, redundant storage, efficient search/location of data items, data permanence or guarantees, hierarchical naming, trust and authentication, and, anonymity. P2P networks potentially offer an efficient routing architecture that is self-organizing, massively scalable, and robust in the wide-area, combining fault tolerance, load balancing and explicit notion of locality. In this paper, we present a survey and comparison of various Structured and Unstructured P2P networks. We categorize the various schemes into these two groups in the design spectrum and discuss the application-level network performance of each group.
iPlane: An information plane for distributed services
- In OSDI 2006
"... Abstract — In this paper, we present the design, implementation, and evaluation of the iPlane, a scalable service providing accurate predictions of Internet path performance for emerging overlay services. Unlike the more common black box latency prediction techniques in use today, the iPlane builds ..."
Abstract
-
Cited by 297 (25 self)
- Add to MetaCart
(Show Context)
Abstract — In this paper, we present the design, implementation, and evaluation of the iPlane, a scalable service providing accurate predictions of Internet path performance for emerging overlay services. Unlike the more common black box latency prediction techniques in use today, the iPlane builds an explanatory model of the Internet. We predict end-to-end performance by composing measured performance of segments of known Internet paths. This method allows us to accurately and efficiently predict latency, bandwidth, capacity and loss rates between arbitrary Internet hosts. We demonstrate the feasibility and utility of the iPlane service by applying it to several representative overlay services in use today: content distribution, swarming peer-to-peer filesharing, and voice-over-IP. In each case, we observe that using iPlane’s predictions leads to a significant improvement in end user performance. 1
Designing a DHT for low latency and high throughput
- IN PROCEEDINGS OF THE 1ST NSDI
, 2004
"... Designing a wide-area distributed hash table (DHT) that provides high-throughput and low-latency network storage is a challenge. Existing systems have explored a range of solutions, including iterative routing, recursive routing, proximity routing and neighbor selection, erasure coding, replication, ..."
Abstract
-
Cited by 191 (15 self)
- Add to MetaCart
Designing a wide-area distributed hash table (DHT) that provides high-throughput and low-latency network storage is a challenge. Existing systems have explored a range of solutions, including iterative routing, recursive routing, proximity routing and neighbor selection, erasure coding, replication, and server selection. This
Meridian: A Lightweight Network Location Service without Virtual Coordinates
- In SIGCOMM
, 2005
"... This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multi-resolution rings, query routing with direct measurements, and gossip protocols for diss ..."
Abstract
-
Cited by 190 (8 self)
- Add to MetaCart
(Show Context)
This paper introduces a lightweight, scalable and accurate framework, called Meridian, for performing node selection based on network location. The framework consists of an overlay network structured around multi-resolution rings, query routing with direct measurements, and gossip protocols for dissemination. We show how this framework can be used to address three commonly encountered problems, namely, closest node discovery, central leader election, and locating nodes that satisfy target latency constraints in large-scale distributed systems without having to compute absolute coordinates. We show analytically that the framework is scalable with logarithmic convergence when Internet latencies are modeled as a growthconstrained metric, a low-dimensional Euclidean metric, or a metric of low doubling dimension. Large scale simulations, based on latency measurements from 6.25 million node-pairs as well as an implementation deployed on PlanetLab show that the framework is accurate and effective.
Should Internet Service Providers Fear Peer-Assisted Content Distribution?
, 2005
"... Recently, peer-to-peer (P2P) networks have emerged as an attractive solution to enable large-scale content distribution without requiring major infrastructure investments. While such P2P solutions appear highly beneficial for content providers and end-users, there seems to be a growing concern among ..."
Abstract
-
Cited by 130 (3 self)
- Add to MetaCart
Recently, peer-to-peer (P2P) networks have emerged as an attractive solution to enable large-scale content distribution without requiring major infrastructure investments. While such P2P solutions appear highly beneficial for content providers and end-users, there seems to be a growing concern among Internet Service Providers (ISPs) that now need to support the distribution cost. In this work, we explore the potential impact of future P2P file delivery mechanisms as seen from three different perspectives: i) the content provider, ii) the ISPs, and iii) individual content consumers. Using a diverse set of measurements including BitTorrent tracker logs and payload packet traces collected at the edge of a 20,000 user access network, we quantify the impact of peer-assisted file delivery on end-user experience and resource consumption. We further compare it with the performance expected from traditional distribution mechanisms based on large server farms and Content Distribution Networks (CDNs).
A Network Positioning System for the Internet
- PROCEEDINGS OF THE 4TH SYMPOSIUM ON INTERNET TECHNOLOGIES AND SYSTEMS; USENIX
, 2004
"... Network positioning has recently been demonstrated to be a viable concept to represent the network distance relationships among Internet end hosts. Several subsequent studies have examined the potential benefits of using network position in applications, and proposed alternative network positioning ..."
Abstract
-
Cited by 123 (1 self)
- Add to MetaCart
Network positioning has recently been demonstrated to be a viable concept to represent the network distance relationships among Internet end hosts. Several subsequent studies have examined the potential benefits of using network position in applications, and proposed alternative network positioning algorithms. In this paper, we study the problem of designing and building a network positioning system (NPS). We identify several key system building issues such as the consistency, adaptivity and stability of host network positions over time. We propose a hierarchical network positioning architecture that maintains consistency while enabling decentralization, a set of adaptive decentralized algorithms to compute and maintain accurate, stable network positions, and finally present a prototype system deployed on PlanetLab nodes that can be used by a variety of applications. We believe our system is a viable first step to provide a network positioning capability in the Internet.
On the accuracy of embeddings for Internet coordinate systems
- in: Proceedings of the Internet Measurement Conference, ACM
, 2005
"... Internet coordinate systems embed Round-Trip-Times (RTTs) between Internet nodes into some geometric space so that unmeasured RTTs can be estimated using distance computation in that space. If accurate, such techniques would allow us to predict Internet RTTs without extensive measurements. The publi ..."
Abstract
-
Cited by 91 (6 self)
- Add to MetaCart
(Show Context)
Internet coordinate systems embed Round-Trip-Times (RTTs) between Internet nodes into some geometric space so that unmeasured RTTs can be estimated using distance computation in that space. If accurate, such techniques would allow us to predict Internet RTTs without extensive measurements. The published techniques appear to work very well when accuracy is measured using metrics such as absolute relative error. Our main observation is that absolute relative error tells us very little about the quality of an embedding as experienced by a user. We define several new accuracy metrics that attempt to quantify various aspects of user-oriented quality. Evaluation of current Internet coordinate systems using our new metrics indicates that their quality is not as high as that suggested by the use of absolute relative error. 1
Network coordinates in the wild
- In Proceeding of USENIX NSDI’07
, 2007
"... Network coordinates provide a mechanism for selecting and placing servers efficiently in a large distributed system. This approach works well as long as the coordinates continue to accurately reflect network topology. We conducted a long-term study of a subset of a million-plus node coordinate syste ..."
Abstract
-
Cited by 81 (2 self)
- Add to MetaCart
(Show Context)
Network coordinates provide a mechanism for selecting and placing servers efficiently in a large distributed system. This approach works well as long as the coordinates continue to accurately reflect network topology. We conducted a long-term study of a subset of a million-plus node coordinate system and found that it exhibited some of the problems for which network coordinates are frequently criticized, for example, inaccuracy and fragility in the presence of violations of the triangle inequality. Fortunately, we show that several simple techniques remedy many of these problems. Using the Azureus BitTorrent network as our testbed, we show that live, large-scale network coordinate systems behave differently than their tame PlanetLab and simulation-based counterparts. We find higher relative errors, more triangle inequality violations, and higher churn. We present and evaluate a number of techniques that, when applied to Azureus, efficiently produce accurate and stable network coordinates. 1
How much anonymity does network latency leak
- In CCS ’07: Proceedings of the 14th ACM conference on Computer and communications security. ACM
, 2007
"... Low-latency anonymity systems such as Tor, AN.ON, Crowds, and Anonymizer.com aim to provide anonymous connections that are both untraceable by “local ” adversaries who control only a few machines, and have low enough delay to support anonymous use of network services like web browsing and remote log ..."
Abstract
-
Cited by 76 (1 self)
- Add to MetaCart
Low-latency anonymity systems such as Tor, AN.ON, Crowds, and Anonymizer.com aim to provide anonymous connections that are both untraceable by “local ” adversaries who control only a few machines, and have low enough delay to support anonymous use of network services like web browsing and remote login. One consequence of these goals is that these services leak some information about the network latency between the sender and one or more nodes in the system. We present two attacks on low-latency anonymity schemes using this information. The first attack allows a pair of colluding web sites to predict, based on local timing information and with no additional resources, whether two connections from the same Tor exit node are using the same circuit with high confidence. The second attack requires more resources but allows a malicious website to gain several bits of information about a client each time he visits the site. We evaluate both attacks against two low-latency anonymity protocols – the Tor network and the MultiProxy proxy aggregator service – and conclude that both are highly vulnerable to these attacks. Categories and Subject Descriptors: C.2.0 [Computer Networks]: General—Security and protection;