Results 1  10
of
16
Dominating Sets in Planar Graphs: BranchWidth and Exponential Speedup
, 2002
"... Graph minors theory, developed by Robertson & Seymour, provides a list of powerful theoretical results and tools. However, the wide spread opinion in Graph Algorithms community about this theory is that it is mainly of theoretical importance. ..."
Abstract

Cited by 72 (17 self)
 Add to MetaCart
Graph minors theory, developed by Robertson & Seymour, provides a list of powerful theoretical results and tools. However, the wide spread opinion in Graph Algorithms community about this theory is that it is mainly of theoretical importance.
Subexponential parameterized algorithms on graphs of boundedgenus and Hminorfree Graphs
"... ... Building on these results, we develop subexponential fixedparameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. Inparticular, this general category of graphs includes planar graphs, boundedgenus graphs, singlecrossing ..."
Abstract

Cited by 62 (21 self)
 Add to MetaCart
... Building on these results, we develop subexponential fixedparameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. Inparticular, this general category of graphs includes planar graphs, boundedgenus graphs, singlecrossingminorfree graphs, and anyclass of graphs that is closed under taking minors. Specifically, the running time is 2O(pk)nh, where h is a constant depending onlyon H, which is polynomial for k = O(log² n). We introducea general approach for developing algorithms on Hminorfreegraphs, based on structural results about Hminorfree graphs at the
Algorithmic Graph Minor Theory: Decomposition, Approximation, and Coloring
 In 46th Annual IEEE Symposium on Foundations of Computer Science
, 2005
"... At the core of the seminal Graph Minor Theory of Robertson and Seymour is a powerful structural theorem capturing the structure of graphs excluding a fixed minor. This result is used throughout graph theory and graph algorithms, but is existential. We develop a polynomialtime algorithm using topolog ..."
Abstract

Cited by 58 (15 self)
 Add to MetaCart
(Show Context)
At the core of the seminal Graph Minor Theory of Robertson and Seymour is a powerful structural theorem capturing the structure of graphs excluding a fixed minor. This result is used throughout graph theory and graph algorithms, but is existential. We develop a polynomialtime algorithm using topological graph theory to decompose a graph into the structure guaranteed by the theorem: a cliquesum of pieces almostembeddable into boundedgenus surfaces. This result has many applications. In particular, we show applications to developing many approximation algorithms, including a 2approximation to graph coloring, constantfactor approximations to treewidth and the largest grid minor, combinatorial polylogarithmicapproximation to halfintegral multicommodity flow, subexponential fixedparameter algorithms, and PTASs for many minimization and maximization problems, on graphs excluding a fixed minor. 1.
The bidimensionality Theory and Its Algorithmic Applications
 Computer Journal
, 2005
"... This paper surveys the theory of bidimensionality. This theory characterizes a broad range of graph problems (‘bidimensional’) that admit efficient approximate or fixedparameter solutions in a broad range of graphs. These graph classes include planar graphs, map graphs, boundedgenus graphs and gra ..."
Abstract

Cited by 49 (3 self)
 Add to MetaCart
This paper surveys the theory of bidimensionality. This theory characterizes a broad range of graph problems (‘bidimensional’) that admit efficient approximate or fixedparameter solutions in a broad range of graphs. These graph classes include planar graphs, map graphs, boundedgenus graphs and graphs excluding any fixed minor. In particular, bidimensionality theory builds on the Graph Minor Theory of Robertson and Seymour by extending the mathematical results and building new algorithmic tools. Here, we summarize the known combinatorial and algorithmic results of bidimensionality theory with the highlevel ideas involved in their proof; we describe the previous work on which the theory is based and/or extends; and we mention several remaining open problems. 1.
Linearity of Grid Minors in Treewidth with Applications through Bidimensionality
, 2005
"... We prove that any Hminorfree graph, for a fixed graph H, of treewidth w has an \Omega (w) *\Omega ( w) grid graph as a minor. Thus grid minors suffice to certify that Hminorfree graphs havelarge treewidth, up to constant factors. This strong relationship was previously known for the special cas ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
We prove that any Hminorfree graph, for a fixed graph H, of treewidth w has an \Omega (w) *\Omega ( w) grid graph as a minor. Thus grid minors suffice to certify that Hminorfree graphs havelarge treewidth, up to constant factors. This strong relationship was previously known for the special cases of planar graphs and boundedgenus graphs, and is known not to hold for generalgraphs. The approach of this paper can be viewed more generally as a framework for extending combinatorial results on planar graphs to hold on Hminorfree graphs for any fixed H. Ourresult has many combinatorial consequences on bidimensionality theory, parametertreewidth bounds, separator theorems, and bounded local treewidth; each of these combinatorial resultshas several algorithmic consequences including subexponential fixedparameter algorithms and approximation algorithms.
Bidimensional parameters and local treewidth
 SIAM Journal on Discrete Mathematics
, 2004
"... Abstract. For several graph theoretic parameters such as vertex cover and dominating set, it is known that if their values are bounded by k then the treewidth of the graph is bounded by some function of k. This fact is used as the main tool for the design of several fixedparameter algorithms on min ..."
Abstract

Cited by 32 (17 self)
 Add to MetaCart
(Show Context)
Abstract. For several graph theoretic parameters such as vertex cover and dominating set, it is known that if their values are bounded by k then the treewidth of the graph is bounded by some function of k. This fact is used as the main tool for the design of several fixedparameter algorithms on minorclosed graph classes such as planar graphs, singlecrossingminorfree graphs, and graphs of bounded genus. In this paper we examine the question whether similar bounds can be obtained for larger minorclosed graph classes, and for general families of parameters including all the parameters where such a behavior has been reported so far. Given a graph parameter P, we say that a graph family F has the parametertreewidth property for P if there is a function f(p) such that every graph G ∈ F with parameter at most p has treewidth at most f(p). We prove as our main result that, for a large family of parameters called contractionbidimensional parameters, a minorclosed graph family F has the parametertreewidth property if F has bounded local treewidth. We also show “if and only if ” for some parameters, and thus this result is in some sense tight. In addition we show that, for a slightly smaller family of parameters called minorbidimensional parameters, all minorclosed graph families F excluding some fixed graphs have the parametertreewidth property. The bidimensional parameters include many domination and covering parameters such as vertex cover, feedback vertex set, dominating set, edgedominating set, qdominating set (for fixed q). We use these theorems to develop new fixedparameter algorithms in these contexts. 1
Graphs Excluding a Fixed Minor have Grids as Large as Treewidth, with Combinatorial and Algorithmic Applications through Bidimensionality
, 2005
"... We prove that any Hminorfree graph, for a fixed graph H, of treewidth w has an Ω(w) × Ω(w) grid graph as a minor. Thus grid minors suffice to certify that Hminorfree graphs have large treewidth, up to constant factors. This strong relationship was previously known for the special cases of plana ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
(Show Context)
We prove that any Hminorfree graph, for a fixed graph H, of treewidth w has an Ω(w) × Ω(w) grid graph as a minor. Thus grid minors suffice to certify that Hminorfree graphs have large treewidth, up to constant factors. This strong relationship was previously known for the special cases of planar graphs and boundedgenus graphs, and is known not to hold for general graphs. The approach of this paper can be viewed more generally as a framework for extending combinatorial results on planar graphs to hold on Hminorfree graphs for any fixed H. Our result has many combinatorial consequences on bidimensionality theory, parametertreewidth bounds, separator theorems, and bounded local treewidth; each of these combinatorial results has several algorithmic consequences including subexponential fixedparameter algorithms and approximation algorithms.
Algorithmic MetaTheorems
 In M. Grohe and R. Neidermeier eds, International Workshop on Parameterized and Exact Computation (IWPEC), volume 5018 of LNCS
, 2008
"... Algorithmic metatheorems are algorithmic results that apply to a whole range of problems, instead of addressing just one specific problem. This kind of theorems are often stated relative to a certain class of graphs, so the general form of a meta theorem reads “every problem in a certain class C of ..."
Abstract

Cited by 22 (6 self)
 Add to MetaCart
(Show Context)
Algorithmic metatheorems are algorithmic results that apply to a whole range of problems, instead of addressing just one specific problem. This kind of theorems are often stated relative to a certain class of graphs, so the general form of a meta theorem reads “every problem in a certain class C of problems can be solved efficiently on every graph satisfying a certain property P”. A particularly well known example of a metatheorem is Courcelle’s theorem that every decision problem definable in monadic secondorder logic (MSO) can be decided in linear time on any class of graphs of bounded treewidth [1]. The class C of problems can be defined in a number of different ways. One option is to state combinatorial or algorithmic criteria of problems in C. For instance, Demaine, Hajiaghayi and Kawarabayashi [5] showed that every minimisation problem that can be solved efficiently on graph classes of bounded treewidth and for which approximate solutions can be computed efficiently from solutions of certain subinstances, have a PTAS on any class of graphs excluding a fixed minor. While this gives a strong unifying explanation for PTAS of many
Fast algorithms for hard graph problems: Bidimensionality, minors, and local treewidth
 In Proceedings of the 12th International Symposium on Graph Drawing, volume 3383 of Lecture Notes in Computer Science
, 2004
"... Abstract. This paper surveys the theory of bidimensional graph problems. We summarize the known combinatorial and algorithmic results of this theory, the foundational Graph Minor results on which this theory is based, and the remaining open problems. 1 ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
Abstract. This paper surveys the theory of bidimensional graph problems. We summarize the known combinatorial and algorithmic results of this theory, the foundational Graph Minor results on which this theory is based, and the remaining open problems. 1
Contraction Bidimensionality: The Accurate Picture
 Proceedings of the 17th Annual European Symposium on Algorithms, Lecture Notes in Computer Science
, 2009
"... Abstract. We provide new combinatorial theorems on the structure of graphs that are contained as contractions in graphs of large treewidth. As a consequence of our combinatorial results we unify and significantly simplify contraction bidimensionality theory—the meta algorithmic framework to design ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
(Show Context)
Abstract. We provide new combinatorial theorems on the structure of graphs that are contained as contractions in graphs of large treewidth. As a consequence of our combinatorial results we unify and significantly simplify contraction bidimensionality theory—the meta algorithmic framework to design efficient parameterized and approximation algorithms for contraction closed parameters. 1