Results 1 - 10
of
431
N.: Z3: An efficient SMT solver. In:
- Proc. of 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
, 2008
"... ..."
(Show Context)
Extended Static Checking for Java
, 2002
"... Software development and maintenance are costly endeavors. The cost can be reduced if more software defects are detected earlier in the development cycle. This paper introduces the Extended Static Checker for Java (ESC/Java), an experimental compile-time program checker that finds common programming ..."
Abstract
-
Cited by 638 (24 self)
- Add to MetaCart
(Show Context)
Software development and maintenance are costly endeavors. The cost can be reduced if more software defects are detected earlier in the development cycle. This paper introduces the Extended Static Checker for Java (ESC/Java), an experimental compile-time program checker that finds common programming errors. The checker is powered by verification-condition generation and automatic theoremproving techniques. It provides programmers with a simple annotation language with which programmer design decisions can be expressed formally. ESC/Java examines the annotated software and warns of inconsistencies between the design decisions recorded in the annotations and the actual code, and also warns of potential runtime errors in the code. This paper gives an overview of the checker architecture and annotation language and describes our experience applying the checker to tens of thousands of lines of Java programs.
The Spec# Programming System: An Overview
, 2004
"... Spec# is the latest in a long line of work on programming languages and systems aimed at improving the development of correct software. This paper describes the goals and architecture of the Spec# programming system, consisting of the object-oriented Spec# programming language, the Spec# compiler ..."
Abstract
-
Cited by 542 (50 self)
- Add to MetaCart
(Show Context)
Spec# is the latest in a long line of work on programming languages and systems aimed at improving the development of correct software. This paper describes the goals and architecture of the Spec# programming system, consisting of the object-oriented Spec# programming language, the Spec# compiler, and the Boogie static program verifier. The language includes constructs for writing specifications that capture programmer intentions about how methods and data are to be used, the compiler emits run-time checks to enforce these specifications, and the verifier can check the consistency between a program and its specifications. The Spec#
An Overview of JML Tools and Applications
, 2003
"... The Java Modeling Language (JML) can be used to specify the detailed design of Java classes and interfaces by adding annotations to Java source files. The aim of JML is to provide a specification language that is easy to use for Java programmers and that is supported by a wide range of tools for ..."
Abstract
-
Cited by 368 (54 self)
- Add to MetaCart
(Show Context)
The Java Modeling Language (JML) can be used to specify the detailed design of Java classes and interfaces by adding annotations to Java source files. The aim of JML is to provide a specification language that is easy to use for Java programmers and that is supported by a wide range of tools for specification type-checking, runtime debugging, static analysis, and verification. This paper
A Fast Linear-Arithmetic Solver for DPLL(T)
, 2006
"... We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of the ..."
Abstract
-
Cited by 289 (13 self)
- Add to MetaCart
(Show Context)
We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplex-based solvers in DPLL(T) decision procedures. The new solver is even competitive with state-of-the-art tools specialized for the difference logic fragment.
The Daikon system for dynamic detection of likely invariants
, 2006
"... Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert statements, documentation, and formal speci ..."
Abstract
-
Cited by 243 (10 self)
- Add to MetaCart
(Show Context)
Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert statements, documentation, and formal specifications. Examples include being constant (x = a), non-zero (x ̸ = 0), being in a
Lazy Satisfiability Modulo Theories
- JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 3 (2007) 141Â224
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some decidable first-order theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract
-
Cited by 189 (50 self)
- Add to MetaCart
(Show Context)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with respect to some decidable first-order theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theory-specific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (T-solver), handling respectively the Boolean and the theory-specific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that
Towards automatic generation of vulnerability-based signatures
, 2006
"... In this paper we explore the problem of creating vulnerability signatures. A vulnerability signature matches all exploits of a given vulnerability, even polymorphic or metamorphic variants. Our work departs from previous approaches by focusing on the semantics of the program and vulnerability exerci ..."
Abstract
-
Cited by 153 (28 self)
- Add to MetaCart
(Show Context)
In this paper we explore the problem of creating vulnerability signatures. A vulnerability signature matches all exploits of a given vulnerability, even polymorphic or metamorphic variants. Our work departs from previous approaches by focusing on the semantics of the program and vulnerability exercised by a sample exploit instead of the semantics or syntax of the exploit itself. We show the semantics of a vulnerability define a language which contains all and only those inputs that exploit the vulnerability. A vulnerability signature is a representation (e.g., a regular expression) of the vulnerability language. Unlike exploitbased signatures whose error rate can only be empirically measured for known test cases, the quality of a vulnerability signature can be formally quantified for all possible inputs. We provide a formal definition of a vulnerability signature and investigate the computational complexity of creating and matching vulnerability signatures. We also systematically explore the design space of vulnerability signatures. We identify three central issues in vulnerability-signature creation: how a vulnerability signature represents the set of inputs that may exercise a vulnerability, the vulnerability coverage (i.e., number of vulnerable program paths) that is subject to our analysis during signature creation, and how a vulnerability signature is then created for a given representation and coverage. We propose new data-flow analysis and novel adoption of existing techniques such as constraint solving for automatically generating vulnerability signatures. We have built a prototype system to test our techniques. Our experiments show that we can automatically generate a vulnerability signature using a single exploit which is of much higher quality than previous exploit-based signatures. In addition, our techniques have several other security applications, and thus may be of independent interest. 1
Symstra: A framework for generating object-oriented unit tests using symbolic execution
- In TACAS
, 2005
"... Abstract. Object-oriented unit tests consist of sequences of method invocations. Behavior of an invocation depends on the method’s arguments and the state of the receiver at the beginning of the invocation. Correspondingly, generating unit tests involves two tasks: generating method sequences that b ..."
Abstract
-
Cited by 140 (18 self)
- Add to MetaCart
(Show Context)
Abstract. Object-oriented unit tests consist of sequences of method invocations. Behavior of an invocation depends on the method’s arguments and the state of the receiver at the beginning of the invocation. Correspondingly, generating unit tests involves two tasks: generating method sequences that build relevant receiverobject states and generating relevant method arguments. This paper proposes Symstra, a framework that achieves both test generation tasks using symbolic execution of method sequences with symbolic arguments. The paper defines symbolic states of object-oriented programs and novel comparisons of states. Given a set of methods from the class under test and a bound on the length of sequences, Symstra systematically explores the object-state space of the class and prunes this exploration based on the state comparisons. Experimental results show that Symstra generates unit tests that achieve higher branch coverage faster than the existing test-generation techniques based on concrete method arguments. 1