Results 1 - 10
of
328
Visual Tracking with Online Multiple Instance Learning
, 2009
"... In this paper, we address the problem of learning an adaptive appearance model for object tracking. In particular, a class of tracking techniques called “tracking by detection” have been shown to give promising results at realtime speeds. These methods train a discriminative classifier in an online ..."
Abstract
-
Cited by 261 (19 self)
- Add to MetaCart
(Show Context)
In this paper, we address the problem of learning an adaptive appearance model for object tracking. In particular, a class of tracking techniques called “tracking by detection” have been shown to give promising results at realtime speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrades the classifier and can cause further drift. In this paper we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems, and can therefore lead to a more robust tracker with fewer parameter tweaks. We present a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. 1.
Online Boosting and Vision
, 2006
"... Boosting has become very popular in computer vision, showing impressive performance in detection and recognition tasks. Mainly off-line training methods have been used, which implies that all training data has to be a priori given; training and usage of the classifier are separate steps. Training th ..."
Abstract
-
Cited by 246 (41 self)
- Add to MetaCart
(Show Context)
Boosting has become very popular in computer vision, showing impressive performance in detection and recognition tasks. Mainly off-line training methods have been used, which implies that all training data has to be a priori given; training and usage of the classifier are separate steps. Training the classifier on-line and incrementally as new data becomes available has several advantages and opens new areas of application for boosting in computer vision. In this paper we propose a novel on-line AdaBoost feature selection method. In conjunction with efficient feature extraction methods the method is real time capable. We demonstrate the multifariousness of the method on such diverse tasks as learning complex background models, visual tracking and object detection. All approaches benefit significantly by the on-line training. 1.
People-trackingby-detection and people-detection-by-tracking
- In CVPR’08
"... Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scene ..."
Abstract
-
Cited by 190 (12 self)
- Add to MetaCart
(Show Context)
Both detection and tracking people are challenging problems, especially in complex real world scenes that commonly involve multiple people, complicated occlusions, and cluttered or even moving backgrounds. People detectors have been shown to be able to locate pedestrians even in complex street scenes, but false positives have remained frequent. The identification of particular individuals has remained challenging as well. On the other hand, tracking methods are able to find a particular individual in image sequences, but are severely challenged by real-world scenarios such as crowded street scenes. In this paper, we combine the advantages of both detection and tracking in a single framework. The approximate articulation of each person is detected in every frame based on local features that model the appearance of individual body parts. Prior knowledge on possible articulations and temporal coherency within a walking cycle are modeled using a hierarchical Gaussian process latent variable model (hGPLVM). We show how the combination of these results improves hypotheses for position and articulation of each person in several subsequent frames. We present experimental results that demonstrate how this allows to detect and track multiple people in cluttered scenes with reoccurring occlusions. 1.
Semi-Supervised On-line Boosting for Robust Tracking
, 2008
"... Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of ..."
Abstract
-
Cited by 186 (8 self)
- Add to MetaCart
(Show Context)
Recently, on-line adaptation of binary classifiers for tracking have been investigated. On-line learning allows for simple classifiers since only the current view of the object from its surrounding background needs to be discriminiated. However, on-line adaption faces one key problem: Each update of the tracker may introduce an error which, finally, can lead to tracking failure (drifting). The contribution of this paper is a novel on-line semi-supervised boosting method which significantly alleviates the drifting problem in tracking applications. This allows to limit the drifting problem while still staying adaptive to appearance changes. The main idea is to formulate the update process in a semisupervised fashion as combined decision of a given prior and an on-line classifier. This comes without any parameter tuning. In the experiments, we demonstrate real-time tracking of our SemiBoost tracker on several challenging test sequences where our tracker outperforms other on-line tracking methods.
P-n learning: Bootstrapping binary classifiers by structural constraints
- In IEEE Conference on Computer Vision and Pattern Recognition
, 2010
"... This paper shows that the performance of a binary classifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if knowing the label of one example restricts the labeling of the others. We propose a novel paradigm for training a binary classifier f ..."
Abstract
-
Cited by 143 (4 self)
- Add to MetaCart
(Show Context)
This paper shows that the performance of a binary classifier can be significantly improved by the processing of structured unlabeled data, i.e. data are structured if knowing the label of one example restricts the labeling of the others. We propose a novel paradigm for training a binary classifier from labeled and unlabeled examples that we call P-N learning. The learning process is guided by positive (P) and negative (N) constraints which restrict the labeling of the unlabeled set. P-N learning evaluates the classifier on the unlabeled data, identifies examples that have been classified in contradiction with structural constraints and augments the training set with the corrected samples in an iterative process. We propose a theory that formulates the conditions under which P-N learning guarantees improvement of the initial classifier and validate it on synthetic and real data. P-N learning is applied to the problem of on-line learning of object detector during tracking. We show that an accurate object detector can be learned from a single example and an unlabeled video sequence where the object may occur. The algorithm is compared with related approaches and state-of-the-art is achieved on a variety of objects (faces, pedestrians, cars, motorbikes and animals). 1.
Robust Object Tracking with Online Multiple Instance Learning
, 2011
"... In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called “tracking by detection ” has been shown to give promising results at real-time speeds. These methods train a discrim ..."
Abstract
-
Cited by 140 (7 self)
- Add to MetaCart
In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called “tracking by detection ” has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
Covariance tracking using model update based on lie algebra
- in IEEE Conference on Computer Vision and Pattern Recognition
, 2006
"... We propose a simple and elegant algorithm to track nonrigid objects using a covariance based object description and a Lie algebra based update mechanism. We represent an object window as the covariance matrix of features, therefore we manage to capture the spatial and statistical properties as well ..."
Abstract
-
Cited by 127 (8 self)
- Add to MetaCart
(Show Context)
We propose a simple and elegant algorithm to track nonrigid objects using a covariance based object description and a Lie algebra based update mechanism. We represent an object window as the covariance matrix of features, therefore we manage to capture the spatial and statistical properties as well as their correlation within the same representation. The covariance matrix enables efficient fusion of different types of features and modalities, and its dimensionality is small. We incorporated a model update algorithm using the Lie group structure of the positive definite matrices. The update mechanism effectively adapts to the undergoing object deformations and appearance changes. The covariance tracking method does not make any assumption on the measurement noise and the motion of the tracked objects, and provides the global optimal solution. We show that it is capable of accurately detecting the nonrigid, moving objects in non-stationary camera sequences while achieving a promising detection rate of 97.4 percent.
SIFT Flow: Dense Correspondence across Scenes and its Applications
"... While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image ..."
Abstract
-
Cited by 124 (4 self)
- Add to MetaCart
(Show Context)
While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixel-wise SIFT features between two images, while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuitypreserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignmentbased large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications, such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration and face recognition.
Robust tracking-by-detection using a detector confidence particle filter
- In ICCV
, 2009
"... We propose a novel approach for multi-person trackingby-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. ..."
Abstract
-
Cited by 110 (3 self)
- Add to MetaCart
(Show Context)
We propose a novel approach for multi-person trackingby-detection in a particle filtering framework. In addition to final high-confidence detections, our algorithm uses the continuous confidence of pedestrian detectors and online trained, instance-specific classifiers as a graded observation model. Thus, generic object category knowledge is complemented by instance-specific information. A main contribution of this paper is the exploration of how these unreliable information sources can be used for multi-person tracking. The resulting algorithm robustly tracks a large number of dynamically moving persons in complex scenes with occlusions, does not rely on background modeling, and operates entirely in 2D (requiring no camera or ground plane calibration). Our Markovian approach relies only on information from the past and is suitable for online applications. We evaluate the performance on a variety of datasets and show that it improves upon state-of-the-art methods. 1.
Coupled detection and trajectory estimation for multi-object tracking
- In ICCV
, 2007
"... We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. It is formulated in a hypothesis selection framework and builds upon a state-of-the-art pedestrian detector. At each time instant, it searches ..."
Abstract
-
Cited by 101 (9 self)
- Add to MetaCart
(Show Context)
We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory estimation as a coupled optimization problem. It is formulated in a hypothesis selection framework and builds upon a state-of-the-art pedestrian detector. At each time instant, it searches for the globally optimal set of spacetime trajectories which provides the best explanation for the current image and for all evidence collected so far, while satisfying the constraints that no two objects may occupy the same physical space, nor explain the same image pixels at any point in time. Successful trajectory hypotheses are fed back to guide object detection in future frames. The optimization procedure is kept efficient through incremental computation and conservative hypothesis pruning. The resulting approach can initialize automatically and track a large and varying number of persons over long periods and through complex scenes with clutter, occlusions, and large-scale background changes. Also, the global optimization framework allows our system to recover from mismatches and temporarily lost tracks. We demonstrate the feasibility of the proposed approach on several challenging video sequences. 1.