Results 1  10
of
8,786
Induction of Decision Trees
 MACH. LEARN
, 1986
"... The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such syste ..."
Abstract

Cited by 4381 (4 self)
 Add to MetaCart
The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3615 (15 self)
 Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scaleup experiments show that AprioriHybrid scales linearly with the number of transactions. AprioriHybrid also has excellent scaleup properties with respect to the transaction size and the number of items in the database.
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1403 (31 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. We extend the basic method to handle missing data and hidden (latent) variables. We show how to perform probabilistic inference by averaging over the inferences of multiple belief networks. Results are presented of a preliminary evaluation of an algorithm for constructing a belief network from a database of cases. Finally, we relate the methods in this paper to previous work, and we discuss open problems.
An InformationTheoretic Definition of Similarity
 In Proceedings of the 15th International Conference on Machine Learning
, 1998
"... Similarity is an important and widely used concept. Previous definitions of similarity are tied to a particular application or a form of knowledge representation. We present an informationtheoretic definition of similarity that is applicable as long as there is a probabilistic model. We demonstrate ..."
Abstract

Cited by 1240 (0 self)
 Add to MetaCart
Similarity is an important and widely used concept. Previous definitions of similarity are tied to a particular application or a form of knowledge representation. We present an informationtheoretic definition of similarity that is applicable as long as there is a probabilistic model. We demonstrate how our definition can be used to measure the similarity in a number of different domains.
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 1155 (35 self)
 Add to MetaCart
(Show Context)
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1
An introduction to variational methods for graphical models
 TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
Using Bayesian networks to analyze expression data
 Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract

Cited by 1087 (17 self)
 Add to MetaCart
(Show Context)
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graphbased model of joint multivariate probability distributions that captures properties of conditional independence between variables. Such models are attractive for their ability to describe complex stochastic processes and because they provide a clear methodology for learning from (noisy) observations. We start by showing how Bayesian networks can describe interactions between genes. We then describe a method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally, we demonstrate this method on the S. cerevisiae cellcycle measurements of Spellman et al. (1998). Key words: gene expression, microarrays, Bayesian methods. 1.
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 837 (85 self)
 Add to MetaCart
(Show Context)
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach.
Pictorial Structures for Object Recognition
 IJCV
, 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract

Cited by 818 (15 self)
 Add to MetaCart
(Show Context)
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance of each part is modeled separately, and the deformable configuration is represented by springlike connections between pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic recognition problems. We use these models to address the problem of detecting an object in an image as well as the problem of learning an object model from training examples, and present efficient algorithms for both these problems. We demonstrate the techniques by learning models that represent faces and human bodies and using the resulting models to locate the corresponding objects in novel images.