Results 1  10
of
1,936
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
(Show Context)
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 822 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 678 (27 self)
 Add to MetaCart
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance. In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total
An Architecture for WideArea Multicast Routing
"... Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or ..."
Abstract

Cited by 529 (22 self)
 Add to MetaCart
Existing multicast routing mechanisms were intended for use within regions where a group is widely represented or bandwidth is universally plentiful. When group members, and senders to those group members, are distributed sparsely across a wide area, these schemes are not efficient; data packets or membership report information are occasionally sent over many links that do not lead to receivers or senders, respectively. Wehave developed a multicast routing architecture that efficiently establishes distribution trees across wide area internets, where many groups will be sparsely represented. Efficiency is measured in terms of the state, control message processing, and data packet processing, required across the entire network in order to deliver data packets to the members of the group. Our Protocol Independent Multicast (PIM) architecture: (a) maintains the traditional IP multicast service model of receiverinitiated membership; (b) can be configured to adapt to different multicast group and network characteristics; (c) is not dependent on a specific unicast routing protocol; and (d) uses softstate mechanisms to adapt to underlying network conditions and group dynamics. The robustness, flexibility, and scaling properties of this architecture make it well suited to large heterogeneous internetworks.
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 437 (27 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
 In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS’96
, 1996
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes a ..."
Abstract

Cited by 399 (3 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in � d, the running time increases to O(n(log n) (O(�dc))d�1). For every fixed c, d the running time is n � poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as �p for p � 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
Complexity of answering queries using materialized views
 In Proceedings of the Seventeenth ACM Symposium on Principles of Database Systems, PODS ’98
, 1998
"... WC study the complexity of the problem of answering queries using materinlized views, This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing more expres ..."
Abstract

Cited by 315 (5 self)
 Add to MetaCart
(Show Context)
WC study the complexity of the problem of answering queries using materinlized views, This problem has attracted a lot of attention recently because of its relevance in data integration. Previous work considered only conjunctive view definitions. We examine the consequences of allowing more expressive view definition languages. Tl~olanguagcsweconsiderforviewdefinitionsanduserqueriesare: conjunctive qucrics with inequality, positive queries, datalog, and firstorder logic. We show that the complexity of the problem depcnds on whether views are assumed to store all the tuples that satisfy the view definition, or only a subset of it. Finally, we apply the results to the view consistency and view selfmaintainability problems which nrise in data warehousing. 1
Coalition Structure Generation with Worst Case Guarantees
, 1999
"... Coalition formation is a key topic in multiagent systems. One may prefer a coalition structure that maximizes the sum of the values of the coalitions, but often the number of coalition structures is too large to allow exhaustive search for the optimal one. Furthermore, finding the optimal coalition ..."
Abstract

Cited by 266 (10 self)
 Add to MetaCart
Coalition formation is a key topic in multiagent systems. One may prefer a coalition structure that maximizes the sum of the values of the coalitions, but often the number of coalition structures is too large to allow exhaustive search for the optimal one. Furthermore, finding the optimal coalition structure is NPcomplete. But then, can the coalition structure found via a partial search be guaranteed to be within a bound from optimum? We show that none of the previous coalition structure generation algorithms can establish any bound because they search fewer nodes than a threshold that we show necessary for establishing a bound. We present an algorithm that establishes a tight bound within this minimal amount of search, and show that any other algorithm would have to search strictly more. The fraction of nodes needed to be searched approaches zero as the number of agents grows. If additional time remains, our anytime algorithm searches further, and establishes a progressively lower tight bound. Surprisingly, just searching one more node drops the bound in half. As desired, our algorithm lowers the bound rapidly early on, and exhibits diminishing returns to computation. It also significantly outperforms its obvious contenders. Finally, we show how to distribute the desired
A quantitative comparison of graphbased models for internet topology
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1997
"... Graphs are commonly used to model the topological structure of internetworks, to study problems ranging from routing to resource reservation. A variety of graphs are found in the literature, including fixed topologies such as rings or stars, "wellknown" topologies such as the ARPAnet, and ..."
Abstract

Cited by 266 (3 self)
 Add to MetaCart
Graphs are commonly used to model the topological structure of internetworks, to study problems ranging from routing to resource reservation. A variety of graphs are found in the literature, including fixed topologies such as rings or stars, "wellknown" topologies such as the ARPAnet, and randomly generated topologies. While many researchers rely upon graphs for analytic and simulation studies, there has been little analysis of the implications of using a particular model, or how the graph generation method may a ect the results of such studies. Further, the selection of one generation method over another is often arbitrary, since the differences and similarities between methods are not well understood. This paper considers the problem of generating and selecting graph models that reflect the properties of real internetworks. We review generation methods in common use, and also propose several new methods. We consider a set of metrics that characterize the graphs produced by a method, and we quantify similarities and differences amongst several generation methods with respect to these metrics. We also consider the effect of the graph model in the context of a speciffic problem, namely multicast routing.
When trees collide: An approximation algorithm for the generalized Steiner problem on networks
, 1994
"... We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the a ..."
Abstract

Cited by 256 (39 self)
 Add to MetaCart
We give the first approximation algorithm for the generalized network Steiner problem, a problem in network design. An instance consists of a network with linkcosts and, for each pair fi; jg of nodes, an edgeconnectivity requirement r ij . The goal is to find a minimumcost network using the available links and satisfying the requirements. Our algorithm outputs a solution whose cost is within 2dlog 2 (r + 1)e of optimal, where r is the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial minmax approximate equality relating minimumcost networks to maximum packings of certain kinds of cuts. As a consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts; we show that this algorithm has application to estimating the reliability of a probabilistic network.