Results 1 
3 of
3
Certification of compiler optimizations using Kleene algebra with tests
 STUCKEY (EDS.), PROC. RST INTERNAT. CONF. COMPUTATIONAL LOGIC (CL2000), LECTURE NOTES IN ARTI CIAL INTELLIGENCE
, 2000
"... We use Kleene algebra with tests to verify a wide assortment ofcommon compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimin ..."
Abstract

Cited by 45 (13 self)
 Add to MetaCart
(Show Context)
We use Kleene algebra with tests to verify a wide assortment ofcommon compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In each of these cases, we give a formal equational proof of the correctness of the optimizing transformation.
On the Complexity of Reasoning in Kleene Algebra
 Information and Computation
, 1997
"... We study the complexity of reasoning in Kleene algebra and *continuous Kleene algebra in the presence of extra equational assumptions E; that is, the complexity of deciding the validity of universal Horn formulas E ! s = t, where E is a finite set of equations. We obtain various levels of complexi ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
(Show Context)
We study the complexity of reasoning in Kleene algebra and *continuous Kleene algebra in the presence of extra equational assumptions E; that is, the complexity of deciding the validity of universal Horn formulas E ! s = t, where E is a finite set of equations. We obtain various levels of complexity based on the form of the assumptions E. Our main results are: for * continuous Kleene algebra, ffl if E contains only commutativity assumptions pq = qp, the problem is \Pi 0 1 complete; ffl if E contains only monoid equations, the problem is \Pi 0 2 complete; ffl for arbitrary equations E, the problem is \Pi 1 1  complete. The last problem is the universal Horn theory of the *continuous Kleene algebras. This resolves an open question of Kozen (1994). 1 Introduction Kleene algebra (KA) is fundamental and ubiquitous in computer science. Since its invention by Kleene in 1956, it has arisen in various forms in program logic and semantics [17, 28], relational algebra [27, 32], aut...
Certification of Compiler Optimizations using Kleene Algebra with Tests MariaCristina Patron Dexter Kozen
, 1999
"... We use Kleene algebra with tests to verify a wide assortment of common compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimina ..."
Abstract
 Add to MetaCart
We use Kleene algebra with tests to verify a wide assortment of common compiler optimizations, including dead code elimination, common subexpression elimination, copy propagation, loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling, elimination of redundant instructions, array bounds check elimination, and introduction of sentinels. In each of these cases, we give a formal equational proof of the correctness of the optimizing transformation. 1