Results 1  10
of
54
Randomized routing and sorting on fixedconnection networks
 JOURNAL OF ALGORITHMS
, 1994
"... This paper presents a general paradigm for the design of packet routing algorithms for fixedconnection networks. Its basis is a randomized online algorithm for scheduling any set of N packets whose paths have congestion c on any boundeddegree leveled network with depth L in O(c + L + log N) steps ..."
Abstract

Cited by 86 (13 self)
 Add to MetaCart
(Show Context)
This paper presents a general paradigm for the design of packet routing algorithms for fixedconnection networks. Its basis is a randomized online algorithm for scheduling any set of N packets whose paths have congestion c on any boundeddegree leveled network with depth L in O(c + L + log N) steps, using constantsize queues. In this paradigm, the design of a routing algorithm is broken into three parts: (1) showing that the underlying network can emulate a leveled network, (2) designing a path selection strategy for the leveled network, and (3) applying the scheduling algorithm. This strategy yields randomized algorithms for routing and sorting in time proportional to the diameter for meshes, butterflies, shuffleexchange graphs, multidimensional arrays, and hypercubes. It also leads to the construction of an areauniversal network: an Nnode network with area Θ(N) that can simulate any other network of area O(N) with slowdown O(log N).
The Network Architecture of the Connection Machine CM5
 Journal of Parallel and Distributed Computing
, 1992
"... The Connection Machine Model CM5 Supercomputer is a massively parallel computer system designed to offer performance in the range of 1 teraflops (10 12 floatingpoint operations per second). The CM5 obtains its high performance while offering ease of programming, flexibility, and reliability. Th ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
(Show Context)
The Connection Machine Model CM5 Supercomputer is a massively parallel computer system designed to offer performance in the range of 1 teraflops (10 12 floatingpoint operations per second). The CM5 obtains its high performance while offering ease of programming, flexibility, and reliability. The machine contains three communication networks: a data network, a control network, and a diagnostic network. This paper describes the organization of these three networks and how they contribute to the design goals of the CM5. 1 Introduction In the design of a parallel computer, the engineering principle of economy of mechanism suggests that the machine should employ only a single communication network to convey information among the processors in the system. Indeed, many parallel computers contain only a single network: typically, a hypercube or a mesh. The Connection Machine Model CM5 Supercomputer has three networks, however, and none is a hypercube or a mesh. This paper describes the...
Special Purpose Parallel Computing
 Lectures on Parallel Computation
, 1993
"... A vast amount of work has been done in recent years on the design, analysis, implementation and verification of special purpose parallel computing systems. This paper presents a survey of various aspects of this work. A long, but by no means complete, bibliography is given. 1. Introduction Turing ..."
Abstract

Cited by 81 (6 self)
 Add to MetaCart
A vast amount of work has been done in recent years on the design, analysis, implementation and verification of special purpose parallel computing systems. This paper presents a survey of various aspects of this work. A long, but by no means complete, bibliography is given. 1. Introduction Turing [365] demonstrated that, in principle, a single general purpose sequential machine could be designed which would be capable of efficiently performing any computation which could be performed by a special purpose sequential machine. The importance of this universality result for subsequent practical developments in computing cannot be overstated. It showed that, for a given computational problem, the additional efficiency advantages which could be gained by designing a special purpose sequential machine for that problem would not be great. Around 1944, von Neumann produced a proposal [66, 389] for a general purpose storedprogram sequential computer which captured the fundamental principles of...
Scalable Parallel Computational Geometry for Coarse Grained Multicomputers
 International Journal on Computational Geometry
, 1994
"... We study scalable parallel computational geometry algorithms for the coarse grained multicomputer model: p processors solving a problem on n data items, were each processor has O( n p ) AE O(1) local memory and all processors are connected via some arbitrary interconnection network (e.g. mesh, hype ..."
Abstract

Cited by 76 (14 self)
 Add to MetaCart
(Show Context)
We study scalable parallel computational geometry algorithms for the coarse grained multicomputer model: p processors solving a problem on n data items, were each processor has O( n p ) AE O(1) local memory and all processors are connected via some arbitrary interconnection network (e.g. mesh, hypercube, fat tree). We present O( Tsequential p + T s (n; p)) time scalable parallel algorithms for several computational geometry problems. T s (n; p) refers to the time of a global sort operation. Our results are independent of the multicomputer's interconnection network. Their time complexities become optimal when Tsequential p dominates T s (n; p) or when T s (n; p) is optimal. This is the case for several standard architectures, including meshes and hypercubes, and a wide range of ratios n p that include many of the currently available machine configurations. Our methods also have some important practical advantages: For interprocessor communication, they use only a small fixed numb...
On the Fault Tolerance of Some Popular BoundedDegree Networks
 SIAM Journal on Computing
, 1992
"... In this paper, we analyze the ability of several boundeddegree networks that are commonly used for parallel computation to tolerate faults. Among other things, we show that an Nnode butterfly containing N 1\Gammaffl worstcase faults (for any constant ffl ? 0) can emulate a faultfree butterfly ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
(Show Context)
In this paper, we analyze the ability of several boundeddegree networks that are commonly used for parallel computation to tolerate faults. Among other things, we show that an Nnode butterfly containing N 1\Gammaffl worstcase faults (for any constant ffl ? 0) can emulate a faultfree butterfly of the same size with only constant slowdown. Similar results are proved for the shuffleexchange graph. Hence, these networks become the first connected boundeddegree networks known to be able to sustain more than a constant number of worstcase faults without suffering more than a constantfactor slowdown in performance. We also show that an Nnode butterfly whose nodes fail with some constant probability p can emulate a faultfree version of itself with a slowdown of 2 O(log N) , which is a very slowly increasing function of N . The proofs of these results combine the technique of redundant computation with new algorithms for (packet) routing around faults in hypercubic networks. Tech...
Adversarial contention resolution for simple channels
 In: 17th Annual Symposium on Parallelism in Algorithms and Architectures
, 2005
"... This paper analyzes the worstcase performance of randomized backoff on simple multipleaccess channels. Most previous analysis of backoff has assumed a statistical arrival model. For batched arrivals, in which all n packets arrive at time 0, we show the following tight highprobability bounds. Rand ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
(Show Context)
This paper analyzes the worstcase performance of randomized backoff on simple multipleaccess channels. Most previous analysis of backoff has assumed a statistical arrival model. For batched arrivals, in which all n packets arrive at time 0, we show the following tight highprobability bounds. Randomized binary exponential backoff has makespan Θ(nlgn), and more generally, for any constant r, rexponential backoff has makespan Θ(nlog lgr n). Quadratic backoff has makespan Θ((n/lg n) 3/2), and more generally, for r> 1, rpolynomial backoff has makespan Θ((n/lg n) 1+1/r). Thus, for batched inputs, both exponential and polynomial backoff are highly sensitive to backoff constants. We exhibit a monotone superpolynomial subexponential backoff algorithm, called loglogiterated backoff, that achieves makespan Θ(nlg lgn/lg lglgn). We provide a matching lower bound showing that this strategy is optimal among all monotone backoff algorithms. Of independent interest is that this lower bound was proved with a delay sequence argument. In the adversarialqueuing model, we present the following stability and instability results for exponential backoff and loglogiterated backoff. Given a (λ,T)stream, in which at most n = λT packets arrive in any interval of size T, exponential backoff is stable for arrival rates of λ = O(1/lgn) and unstable for arrival rates of λ = Ω(lglgn/lg n); loglogiterated backoff is stable for arrival rates of λ = O(1/(lg lgnlgn)) and unstable for arrival rates of λ = Ω(1/lg n). Our instability results show that bursty input is close to being worstcase for exponential backoff and variants and that even small bursts can create instabilities in the channel.
Horizons of Parallel Computation
 JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
, 1993
"... This paper considers the ultimate impact of fundamental physical limitationsnotably, speed of light and device sizeon parallel computing machines. Although we fully expect an innovative and very gradual evolution to the limiting situation, we take here the provocative view of exploring the ..."
Abstract

Cited by 45 (5 self)
 Add to MetaCart
This paper considers the ultimate impact of fundamental physical limitationsnotably, speed of light and device sizeon parallel computing machines. Although we fully expect an innovative and very gradual evolution to the limiting situation, we take here the provocative view of exploring the consequences of the accomplished attainment of the physical bounds. The main result is that scalability holds only for neighborly interconnections, such as the square mesh, of boundedsize synchronous modules, presumably of the areauniversal type. We also discuss the ultimate infeasibility of latencyhiding, the violation of intuitive maximal speedups, and the emerging novel processortime tradeoffs.
kary ntrees: High Performance Networks for Massively Parallel Architectures
 In Proceedings of the 11th International Parallel Processing Symposium, IPPS'97
, 1997
"... The past few years have seen a rise in popularity of massively parallel architectures that use fattrees as their interconnection networks. In this paper we study the communication performance of a parametric family of fattrees, the kary ntrees, built with constant arity switches interconnected i ..."
Abstract

Cited by 44 (8 self)
 Add to MetaCart
The past few years have seen a rise in popularity of massively parallel architectures that use fattrees as their interconnection networks. In this paper we study the communication performance of a parametric family of fattrees, the kary ntrees, built with constant arity switches interconnected in a regular topology. Through simulation on a 4ary 4tree with 256 nodes, we analyze some variants of an adaptive algorithm that utilize wormhole routing with one, two and four virtual channels. The experimental results show that the uniform, bit reversal and transpose traffic patterns are very sensitive to the flow control strategy. In all these cases, the saturation points are between 35 \Gamma 40% of the network capacity with one virtual channel, 55\Gamma60% with two virtual channels and around 75% with four virtual channels. The complement traffic, a representative of the class of the congestionfree communication patterns, reaches an optimal performance, with a saturation point at 97% of the capacity for all flow control strategies.
CommunicationEfficient Parallel Algorithms for Distributed RandomAccess Machines
 Algorithmica
, 1988
"... This paper introduces a model for parallel computation, called the distributed randomaccess machine (DRAM), in which the communication requirements of parallel algorithms can be evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are implemented by routing messages ..."
Abstract

Cited by 38 (2 self)
 Add to MetaCart
(Show Context)
This paper introduces a model for parallel computation, called the distributed randomaccess machine (DRAM), in which the communication requirements of parallel algorithms can be evaluated. A DRAM is an abstraction of a parallel computer in which memory accesses are implemented by routing messages through a communication network. A DRAM explicitly models the congestion of messages across cuts of the network. We introduce the notion of a conservative algorithm as one whose communication requirements at each step can be bounded by the congestion of pointers of the input data structure across cuts of a DRAM. We give a simple lemma that shows how to "shortcut" pointers in a data structure so that remote processors can communicate without causing undue congestion. We give O(lg n)step, linearprocessor, linearspace, conservative algorithms for a variety of problems on n node trees, such as computing treewalk numberings, finding the separator of a tree, and evaluating all subexpressions ...