Results 1 - 10
of
161
Separation and Information Hiding
, 2004
"... We investigate proof rules for information hiding, using the recent formalism of separation logic. In essence, we use the separating conjunction to partition the internal resources of a module from those accessed by the module's clients. The use of a logical connective gives rise to a form of d ..."
Abstract
-
Cited by 187 (20 self)
- Add to MetaCart
(Show Context)
We investigate proof rules for information hiding, using the recent formalism of separation logic. In essence, we use the separating conjunction to partition the internal resources of a module from those accessed by the module's clients. The use of a logical connective gives rise to a form of dynamic partitioning, where we track the transfer of ownership of portions of heap storage between program components. It also enables us to enforce separation in the presence of mutable data structures with embedded addresses that may be aliased.
Local action and abstract separation logic
- IN PROC. 22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS’07
, 2007
"... Separation logic is an extension of Hoare’s logic which supports a local way of reasoning about programs that mutate memory. We present a study of the semantic structures lying behind the logic. The core idea is of a local action, a state transformer that mutates the state in a local way. We formula ..."
Abstract
-
Cited by 108 (12 self)
- Add to MetaCart
(Show Context)
Separation logic is an extension of Hoare’s logic which supports a local way of reasoning about programs that mutate memory. We present a study of the semantic structures lying behind the logic. The core idea is of a local action, a state transformer that mutates the state in a local way. We formulate local actions for a general class of models called separation algebras, abstracting from the RAM and other specific concrete models used in work on separation logic. Local actions provide a semantics for a generalized form of (sequential) separation logic. We also show that our conditions on local actions allow a general soundness proof for a separation logic for concurrency, interpreted over arbitrary separation algebras.
Modular invariants for layered object structures
- Science of Computer Programming
"... Classical specification and verification techniques support invariants for individual objects whose fields are primitive values, but do not allow sound modular reasoning about invariants involving more complex object structures. Such non-trivial object structures are common, and occur in lists, hash ..."
Abstract
-
Cited by 83 (30 self)
- Add to MetaCart
(Show Context)
Classical specification and verification techniques support invariants for individual objects whose fields are primitive values, but do not allow sound modular reasoning about invariants involving more complex object structures. Such non-trivial object structures are common, and occur in lists, hash tables, and whenever systems are built in layers. A sound and modular verification technique for layered object structures has to deal with the well-known problem of representation exposure and the problem that invariants of higher layers are potentially violated by methods in lower layers; such methods cannot be modularly shown to preserve these invariants. We generalize classical techniques to cover layered object structures using a refined semantics for invariants based on an ownership model for alias control. This semantics enables sound and modular reasoning. We further extend this ownership technique to even more expressive invariants that gain their modularity by imposing certain visibility requirements.
Dynamic frames: Support for framing, dependencies and sharing without restrictions
, 2005
"... Abstract. This paper addresses the frame problem for programming theories that support both sharing and encapsulation through specification variables. The concept of dynamic frames is introduced. It is shown how a programming theory with dynamic frames supports both features, without the use of alia ..."
Abstract
-
Cited by 75 (1 self)
- Add to MetaCart
(Show Context)
Abstract. This paper addresses the frame problem for programming theories that support both sharing and encapsulation through specification variables. The concept of dynamic frames is introduced. It is shown how a programming theory with dynamic frames supports both features, without the use of alias control or any other kind of restriction. In contrast, other approaches introduce a number of restrictions to the programs to ensure soundness.
Specification and verification challenges for sequential object-oriented programs
- UNDER CONSIDERATION FOR PUBLICATION IN FORMAL ASPECTS OF COMPUTING
"... The state of knowledge in how to specify sequential programs in object-oriented languages such as Java and C# and the state of the art in automated verification tools for such programs have made measurable progress in the last several years. This paper describes several remaining challenges and app ..."
Abstract
-
Cited by 70 (5 self)
- Add to MetaCart
The state of knowledge in how to specify sequential programs in object-oriented languages such as Java and C# and the state of the art in automated verification tools for such programs have made measurable progress in the last several years. This paper describes several remaining challenges and approaches to their solution.
Bi hyperdoctrines, higher-order separation logic, and abstraction
- IN ESOP’05, LNCS
, 2005
"... We present a precise correspondence between separation logic and a simple notion of predicate BI, extending the earlier correspondence given between part of separation logic and propositional BI. Moreover, we introduce the notion of a BI hyperdoctrine and show that it soundly models classical and in ..."
Abstract
-
Cited by 69 (26 self)
- Add to MetaCart
We present a precise correspondence between separation logic and a simple notion of predicate BI, extending the earlier correspondence given between part of separation logic and propositional BI. Moreover, we introduce the notion of a BI hyperdoctrine and show that it soundly models classical and intuitionistic first- and higher-order predicate BI, and use it to show that we may easily extend separation logic to higher-order. We also demonstrate that this extension is important for program proving, since it provides sound reasoning principles for data abstraction in the presence of
Regional logic for local reasoning about global invariants
- In European Conference on Object Oriented Programming (ECOOP
, 2008
"... Abstract. Shared mutable objects pose grave challenges in reasoning, especially for data abstraction and modularity. This paper presents a novel logic for erroravoiding partial correctness of programs featuring shared mutable objects. Using a first order assertion language, the logic provides heap-l ..."
Abstract
-
Cited by 67 (9 self)
- Add to MetaCart
(Show Context)
Abstract. Shared mutable objects pose grave challenges in reasoning, especially for data abstraction and modularity. This paper presents a novel logic for erroravoiding partial correctness of programs featuring shared mutable objects. Using a first order assertion language, the logic provides heap-local reasoning about mutation and separation, via ghost fields and variables of type ‘region ’ (finite sets of object references). A new form of modifies clause specifies write, read, and allocation effects using region expressions; this supports effect masking and a frame rule that allows a command to read state on which the framed predicate depends. Soundness is proved using a standard program semantics. The logic facilitates heap-local reasoning about object invariants: disciplines such as ownership are expressible but not hard-wired in the logic. 1
Semantics of separation-logic typing and higher-order frame rules
- In Symposium on Logic in Computer Science, LICS’05
, 2005
"... We show how to give a coherent semantics to programs that are well-specified in a version of separation logic for a language with higher types: idealized algol extended with heaps (but with immutable stack variables). In particular, we provide simple sound rules for deriving higher-order frame rules ..."
Abstract
-
Cited by 65 (20 self)
- Add to MetaCart
(Show Context)
We show how to give a coherent semantics to programs that are well-specified in a version of separation logic for a language with higher types: idealized algol extended with heaps (but with immutable stack variables). In particular, we provide simple sound rules for deriving higher-order frame rules, allowing for local reasoning.
Automated verification of shape and size properties via separation logic
- In VMCAI
, 2007
"... Abstract. Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-de ..."
Abstract
-
Cited by 59 (21 self)
- Add to MetaCart
(Show Context)
Abstract. Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system. 1 Introduction In recent years, separation logic has emerged as a contender for formal reasoningof heap-manipulating imperative programs. While the foundations of separation
Concurrent abstract predicates
, 2010
"... Abstraction is key to understanding and reasoning about large computer systems. Abstraction is simple to achieve if the relevant data structures are disjoint, but rather difficult when they are partially shared, as is often the case for concurrent modules. We present a program logic for reasoning ab ..."
Abstract
-
Cited by 57 (15 self)
- Add to MetaCart
(Show Context)
Abstraction is key to understanding and reasoning about large computer systems. Abstraction is simple to achieve if the relevant data structures are disjoint, but rather difficult when they are partially shared, as is often the case for concurrent modules. We present a program logic for reasoning abstractly about data structures that provides a fiction of disjointness and permits compositional reasoning. The internal details of a module are completely hidden from the client by concurrent abstract predicates. We reason about a module’s implementation using separation logic with permissions, and provide abstract specifications for use by client programs using concurrent abstract predicates. We illustrate our abstract reasoning by building two implementations of a lock module on top of hardware instructions, and two implementations of a concurrent set module on top of the lock module.