Results 1  10
of
46
Topological Incompleteness and Order Incompleteness of the Lambda Calculus
 ACM TRANSACTIONS ON COMPUTATIONAL LOGIC
, 2001
"... A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In th ..."
Abstract

Cited by 26 (18 self)
 Add to MetaCart
(Show Context)
A model of the untyped lambda calculus induces a lambda theory, i.e., a congruence relation on λterms closed under ff and ficonversion. A semantics (= class of models) of the lambda calculus is incomplete if there exists a lambda theory which is not induced by any model in the semantics. In this paper we introduce a new technique to prove the incompleteness of a wide range of lambda calculus semantics, including the strongly stable one, whose incompleteness had been conjectured by BastoneroGouy [6, 7] and by Berline [9]. The main results of the paper are a topological incompleteness theorem and an order incompleteness theorem. In the first one we show the incompleteness of the lambda calculus semantics given in terms of topological models whose topology satisfies a property of connectedness. In the second one we prove the incompleteness of the class of partially ordered models with finitely many connected components w.r.t. the Alexandroff topology. A further result of the paper is a proof of the completeness of the semantics of the lambda calculus given in terms of topological models whose topology is nontrivial and metrizable.
Graph lambda theories
 Journal of Logic and Computation
, 2004
"... Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theo ..."
Abstract

Cited by 23 (14 self)
 Add to MetaCart
(Show Context)
Lambda theories are equational extensions of the untyped lambda calculus that are closed under derivation. The set of lambda theories is naturally equipped with a structure of complete lattice, where the meet of a family of lambda theories is their intersection, and the join is the least lambda theory containing their union. In this paper we study the structure of the lattice of lambda theories by universal algebraic methods. We show that nontrivial quasiidentities in the language of lattices hold in the lattice of lambda theories, while every nontrivial lattice identity fails in the lattice of lambda theories if the language of lambda calculus is enriched by a suitable finite number of constants. We also show that there exists a sublattice of the lattice of lambda theories which satisfies: (i) a restricted form of distributivity, called meet semidistributivity; and (ii) a nontrivial identity in the language of lattices enriched by the relative product of binary relations.
Compositional Characterizations of λterms using Intersection Types (Extended Abstract)
, 2000
"... We show how to characterize compositionally a number of evaluation properties of λterms using Intersection Type assignment systems. In particular, we focus on termination properties, such as strong normalization, normalization, head normalization, and weak head normalization. We consider also the ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
We show how to characterize compositionally a number of evaluation properties of λterms using Intersection Type assignment systems. In particular, we focus on termination properties, such as strong normalization, normalization, head normalization, and weak head normalization. We consider also the persistent versions of such notions. By way of example, we consider also another evaluation property, unrelated to termination, namely reducibility to a closed term. Many of these characterization results are new, to our knowledge, or else they streamline, strengthen, or generalize earlier results in the literature. The completeness parts of the characterizations are proved uniformly for all the properties, using a settheoretical semantics of intersection types over suitable kinds of stable sets. This technique generalizes Krivine 's and Mitchell's methods for strong normalization to other evaluation properties.
A Continuum of Theories of Lambda Calculus Without Semantics
 16TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2001), IEEE COMPUTER
, 2001
"... In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this resul ..."
Abstract

Cited by 15 (11 self)
 Add to MetaCart
In this paper we give a topological proof of the following result: There exist 2 @0 lambda theories of the untyped lambda calculus without a model in any semantics based on Scott's view of models as partially ordered sets and of functions as monotonic functions. As a consequence of this result, we positively solve the conjecture, stated by BastoneroGouy [6, 7] and by Berline [10], that the strongly stable semantics is incomplete. 1
Vries. An extensional Böhm model
 In Proceedings of the 13th International Conference on Rewriting Techniques and Applications (RTA 2002
, 2002
"... Abstract. We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom ..."
Abstract

Cited by 15 (7 self)
 Add to MetaCart
(Show Context)
Abstract. We show the existence of an infinitary confluent and normalising extension of the finite extensional lambda calculus with beta and eta. Besides infinite beta reductions also infinite eta reductions are possible in this extension, and terms without head normal form can be reduced to bottom. As corollaries we obtain a simple, syntax based construction of an extensional Böhm model of the finite lambda calculus; and a simple, syntax based proof that two lambda terms have the same semantics in this model if and only if they have the same etaBöhm tree if and only if they are observationally equivalent wrt to beta normal forms. The confluence proof reduces confluence of beta, bottom and eta via infinitary commutation and postponement arguments to confluence of beta and bottom and confluence of eta. We give counterexamples against confluence of similar extensions based on the identification of the terms without weak head normal form and the terms without top normal form (rootactive terms) respectively. 1
Simple easy terms
 Intersection Types and Related Systems, volume 70 of Electronic Notes in Computer Science
, 2002
"... Dipartimento di Informatica Universit`a di Venezia ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
Dipartimento di Informatica Universit`a di Venezia
The sensible graph theories of lambda calculus
 IN: 19TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS’04), IEEE COMPUTER
, 2004
"... Sensible λtheories are equational extensions of the untyped lambda calculus that equate all the unsolvable λterms and are closed under derivation. A longstanding open problem in lambda calculus is whether there exists a nonsyntactic model whose equational theory is the least sensible λtheory H (g ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
(Show Context)
Sensible λtheories are equational extensions of the untyped lambda calculus that equate all the unsolvable λterms and are closed under derivation. A longstanding open problem in lambda calculus is whether there exists a nonsyntactic model whose equational theory is the least sensible λtheory H (generated by equating all the unsolvable terms). A related question is whether, given a class of models, there exist a minimal and maximal sensible λtheory represented by it. In this paper we give a positive answer to this question for the semantics of lambda calculus given in terms of graph models. We conjecture that the least sensible graph theory, where “graph theory ” means “λtheory of a graph model”, is equal to H, while in the main result of the paper we characterize the greatest sensible graph theory as the λtheory B generated by equating λterms with the same Böhm tree. This result is a consequence of the fact that all the equations between solvable λterms, which have different Böhm trees, fail in every sensible graph model. Further results of the paper are: (i) the existence of a continuum of different sensible graph theories strictly included in B (this result positively answers Question 2 in [7, Section 6.3]); (ii) the nonexistence of a graph model whose equational theory is exactly the minimal lambda theory λβ (this result negatively answers Question 1 in [7, Section 6.2] for the restricted class of graph models).
Intersection Types and Lambda Models
, 2005
"... Invariance of interpretation by #conversion is one of the minimal requirements for any standard model for the #calculus. With the intersection type systems being a general framework for the study of semantic domains for the #calculus, the present paper provides a (syntactic) characterisation of t ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Invariance of interpretation by #conversion is one of the minimal requirements for any standard model for the #calculus. With the intersection type systems being a general framework for the study of semantic domains for the #calculus, the present paper provides a (syntactic) characterisation of the above mentioned requirement in terms of characterisation results for intersection type assignment systems.
A Complete Characterization of Complete IntersectionType Theories (Extended Abstract)
 ACM TOCL
, 2000
"... M. DEZANICIANCAGLINI Universita di Torino, Italy F. HONSELL Universita di Udine, Italy F. ALESSI Universita di Udine, Italy Abstract We characterize those intersectiontype theories which yield complete intersectiontype assignment systems for lcalculi, with respect to the three canonical ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
(Show Context)
M. DEZANICIANCAGLINI Universita di Torino, Italy F. HONSELL Universita di Udine, Italy F. ALESSI Universita di Udine, Italy Abstract We characterize those intersectiontype theories which yield complete intersectiontype assignment systems for lcalculi, with respect to the three canonical settheoretical semantics for intersectiontypes: the inference semantics, the simple semantics and the Fsemantics. Keywords Lambda Calculus, Intersection Types, Semantic Completeness, Filter Structures. 1 Introduction Intersectiontypes disciplines originated in [6] to overcome the limitations of Curry 's type assignment system and to provide a characterization of strongly normalizing terms of the lcalculus. But very early on, the issue of completeness became crucial. Intersectiontype theories and filter lmodels have been introduced, in [5], precisely to achieve the completeness for the type assignment system l" BCD W , with respect to Scott's simple semantics. And this result, ...
The Minimal Graph Model of Lambda Calculus
"... A longstanding open problem in lambdacalculus, raised by G.Plotkin, is whether there exists a continuous model of the untyped lambdacalculus whose theory is exactly the betatheory or the betaetatheory. A related question, raised recently by C.Berline, is whether, given a class of lambdamode ..."
Abstract

Cited by 10 (9 self)
 Add to MetaCart
(Show Context)
A longstanding open problem in lambdacalculus, raised by G.Plotkin, is whether there exists a continuous model of the untyped lambdacalculus whose theory is exactly the betatheory or the betaetatheory. A related question, raised recently by C.Berline, is whether, given a class of lambdamodels, there is a minimal equational theory represented by it.