Results 1 - 10
of
344
Histograms of Oriented Gradients for Human Detection
- In CVPR
, 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract
-
Cited by 3735 (9 self)
- Add to MetaCart
We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds. 1
Combined Object Categorization and Segmentation With An Implicit Shape Model
- In ECCV workshop on statistical learning in computer vision
, 2004
"... We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatical ..."
Abstract
-
Cited by 406 (10 self)
- Add to MetaCart
(Show Context)
We present a method for object categorization in real-world scenes. Following a common consensus in the field, we do not assume that a figure-ground segmentation is available prior to recognition. However, in contrast to most standard approaches for object class recognition, our approach automatically segments the object as a result of the categorization. This combination of recognition and segmentation into one process is made possible by our use of an Implicit Shape Model, which integrates both capabilities into a common probabilistic framework. In addition to the recognition and segmentation result, it also generates a per-pixel confidence measure specifying the area that supports a hypothesis and how much it can be trusted. We use this confidence to derive a natural extension of the approach to handle multiple objects in a scene and resolve ambiguities between overlapping hypotheses with a novel MDL-based criterion. In addition, we present an extensive evaluation of our method on a standard dataset for car detection and compare its performance to existing methods from the literature. Our results show that the proposed method significantly outperforms previously published methods while needing one order of magnitude less training examples. Finally, we present results for articulated objects, which show that the proposed method can categorize and segment unfamiliar objects in different articulations and with widely varying texture patterns, even under significant partial occlusion.
Learning to detect objects in images via a sparse, part-based representation
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... We study the problem of detecting objects in still, grayscale images. Our primary focus is development of a learning-based approach to the problem, that makes use of a sparse, part-based representation. A vocabulary of distinctive object parts is automatically constructed from a set of sample image ..."
Abstract
-
Cited by 378 (1 self)
- Add to MetaCart
(Show Context)
We study the problem of detecting objects in still, grayscale images. Our primary focus is development of a learning-based approach to the problem, that makes use of a sparse, part-based representation. A vocabulary of distinctive object parts is automatically constructed from a set of sample images of the object class of interest; images are then represented using parts from this vocabulary, together with spatial relations observed among the parts. Based on this representation, a learning algorithm is used to automatically learn to detect instances of the object class in new images. The approach can be applied to any object with distinguishable parts in a relatively fixed spatial configuration; it is evaluated here on difficult sets of real-world images containing side views of cars, and is seen to successfully detect objects in varying conditions amidst background clutter and mild occlusion. In evaluating object detection approaches, several important methodological issues arise that have not been satisfactorily addressed in previous work. A secondary focus of this paper is to highlight these issues and to develop rigorous evaluation standards for the object detection problem. A critical evaluation of our approach under the proposed standards is presented.
Object Detection in Images by Components
, 1999
"... In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivatio ..."
Abstract
-
Cited by 319 (13 self)
- Add to MetaCart
(Show Context)
In this paper we present a component based person detection system that is capable of detecting frontal, rear and near side views of people, and partially occluded persons in cluttered scenes. The framework that is described here for people is easily applied to other objects as well. The motivation for developing a component based approach istwofold: rst, to enhance the performance of person detection systems on frontal and rear views of people and second, to develop a framework that directly addresses the problem of detecting people who are partially occluded or whose body parts blend in with the background. The data classi cation is handled by several support vector machine classi ers arranged in two layers. This architecture is known as Adaptive Combination of Classi ers (ACC). The system performs very well and is capable of detecting people even when all components of a person are not found. The performance of the system is signi cantly better than a full body
Context-Based Vision System for Place and Object Recognition
, 2003
"... While navigating in an environment, a vision system has' to be able to recognize where it is' and what the main objects' in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is' to identify familiar locations' (e ..."
Abstract
-
Cited by 317 (9 self)
- Add to MetaCart
(Show Context)
While navigating in an environment, a vision system has' to be able to recognize where it is' and what the main objects' in the scene are. In this paper we present a context-based vision system for place and object recognition. The goal is' to identify familiar locations' (e.g., office 610, conference room 941, Main Street), to categorize new environments' (office, corridor, street) and to use that information to provide contextualpriors for object recognition (e.g., table, chair, car, computeD. We present a low-dimensional global image representation that provides relevant information for place recognition and categorization, and how such contextual information introduces strong priors' that simplify object recognition. We have trained the system to recognize over 60 locations (indoors' and outdoors') and to suggest the presence and locations' of more than 20 different object types. The algorithm has been integrated into a mobile system that provides real-time feedback to the user. 1This work was sponsored by the Air Force under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Government.
Sharing Features: Efficient Boosting Procedures for Multiclass Object Detection
- IN CVPR
, 2004
"... We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multi-class boosting procedure (joint boosting) ..."
Abstract
-
Cited by 309 (16 self)
- Add to MetaCart
We consider the problem of detecting a large number of different object classes in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, which can be slow and require much training data. We present a multi-class boosting procedure (joint boosting) that reduces both the computational and sample complexity, by finding common features that can be shared across the classes. The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required is observed to scale approximately logarithmically with the number of classes. In addition, we find that the features selected by independently trained classifiers are often specific to the class, whereas the features selected by the jointly trained classifiers are more generic features, such as lines and edges.
Human detection using oriented histograms of flow and appearance
- In ECCV
, 2006
"... Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibl ..."
Abstract
-
Cited by 283 (20 self)
- Add to MetaCart
(Show Context)
Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibly moving cameras and backgrounds, testing several different motion coding schemes and showing empirically that orientated histograms of differential optical flow give the best overall performance. These motion-based descriptors are combined with our Histogram of Oriented Gradient appearance descriptors. The resulting detector is tested on several databases including a challenging test set taken from feature films and containing wide ranges of pose, motion and background variations, including moving cameras and backgrounds. We validate our results on two challenging test sets containing more than 4400 human examples. The combined detector reduces the false alarm rate by a factor of 10 relative to the best appearance-based detector, for example giving false alarm rates of 1 per 20,000 windows tested at 8 % miss rate on our Test Set 1. 1
Contextual Priming for Object Detection
- IJCV
, 2003
"... There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple framew ..."
Abstract
-
Cited by 281 (20 self)
- Add to MetaCart
There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.
Sharing Visual Features for Multiclass And Multiview Object Detection
, 2004
"... We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each clas ..."
Abstract
-
Cited by 279 (6 self)
- Add to MetaCart
(Show Context)
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects.