Results 1 
3 of
3
Approximating probabilistic inference in Bayesian belief networks is NPhard
, 1991
"... Abstract A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stoch ..."
Abstract

Cited by 287 (3 self)
 Add to MetaCart
Abstract A belief network comprises a graphical representation of dependencies between variables of a domain and a set of conditional probabilities associated with each dependency. Unless P=NP, an efficient, exact algorithm does not exist to compute probabilistic inference in belief networks. Stochastic simulation methods, which often improve run times, provide an alternative to exact inference algorithms. We present such a stochastic simulation algorithm 2)BNRAS that is a randomized approximation scheme. To analyze the run time, we parameterize belief networks by the dependence value PE, which is a measure of the cumulative strengths of the belief network dependencies given background evidence E. This parameterization defines the class of fdependence networks. The run time of 2)BNRAS is polynomial when f is a polynomial function. Thus, the results of this paper prove the existence of a class of belief networks for which inference approximation is polynomial and, hence, provably faster than any exact algorithm. I.
Learning Bayesian belief networks: An approach based on the MDL principle
 Computational Intelligence
, 1994
"... A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being lear ..."
Abstract

Cited by 247 (7 self)
 Add to MetaCart
(Show Context)
A new approach for learning Bayesian belief networks from raw data is presented. The approach is based on Rissanen's Minimal Description Length (MDL) principle, which is particularly well suited for this task. Our approach does not require any prior assumptions about the distribution being learned. In particular, our method can learn unrestricted multiplyconnected belief networks. Furthermore, unlike other approaches our method allows us to tradeo accuracy and complexity in the learned model. This is important since if the learned model is very complex (highly connected) it can be conceptually and computationally intractable. In such a case it would be preferable to use a simpler model even if it is less accurate. The MDL principle o ers a reasoned method for making this tradeo. We also show that our method generalizes previous approaches based on Kullback crossentropy. Experiments have been conducted to demonstrate the feasibility of the approach. Keywords: Knowledge Acquisition � Bayes Nets � Uncertainty Reasoning. 1
A Bayesian Analysis of Simulation Algorithms for Inference in Belief Networks,
 Networks
, 1993
"... A belief network is a graphical representation of the underlying probabilistic relationships in a complex system. Belief networks have been employed as a representation of uncertain relationships in computerbased diagnostic systems. These diagnostic systems provide assistance by assigning likeli ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
A belief network is a graphical representation of the underlying probabilistic relationships in a complex system. Belief networks have been employed as a representation of uncertain relationships in computerbased diagnostic systems. These diagnostic systems provide assistance by assigning likelihoods to alternative explanatory hypotheses in response to a set of findings or observations. Approximation algorithms have been used to compute likelihoods of hypotheses in large networks. We analyze the performance of leading Monte Carlo approximation algorithms for computing posterior probabilities in belief networks. The analysis differs from earlier attempts to characterize the behavior of simulation algorithms in our explicit use of Bayesian statistics: We update a probability distribution over target probabilities of interest with information from randomized trials. For real ffl; ffi ! 1 and for a probabilistic inference Pr[xje], the output of an inference approximation algorithm is an (ffl; ffi)estimate of Pr[xje] if with probability at least 1 \Gamma ffi the output is within relative error ffl of Pr[xje]. We construct a stopping rule for the number of simulations required by logic sampling, randomized approximation schemes, and likelihood weighting to provide (ffl; ffi)estimates of Pr[xje]. With probability 1 \Gamma ffi, the stopping rule is optimal in the sense that the algorithm performs the minimum number of required simulations. We prove that our stopping rules are insensitive to the prior probability distribution on Pr[xje].