Results 1 
3 of
3
How to compare different loss functions and their risks
, 2006
"... Many learning problems are described by a risk functional which in turn is defined by a loss function, and a straightforward and widelyknown approach to learn such problems is to minimize a (modified) empirical version of this risk functional. However, in many cases this approach suffers from subst ..."
Abstract

Cited by 25 (2 self)
 Add to MetaCart
Many learning problems are described by a risk functional which in turn is defined by a loss function, and a straightforward and widelyknown approach to learn such problems is to minimize a (modified) empirical version of this risk functional. However, in many cases this approach suffers from substantial problems such as computational requirements in classification or robustness concerns in regression. In order to resolve these issues many successful learning algorithms try to minimize a (modified) empirical risk of a surrogate loss function, instead. Of course, such a surrogate loss must be “reasonably related ” to the original loss function since otherwise this approach cannot work well. For classification good surrogate loss functions have been recently identified, and the relationship between the excess classification risk and the excess risk of these surrogate loss functions has been exactly described. However, beyond the classification problem little is known on good surrogate loss functions up to now. In this work we establish a general theory that provides powerful tools for comparing excess risks of different loss functions. We then apply this theory to several learning problems including (costsensitive) classification, regression, density estimation, and density level detection.
Online Importance Weight Aware Updates
"... An importance weight quantifies the relative importance of one example over another, coming up in applications of boosting, asymmetric classification costs, reductions, and active learning. The standard approach for dealing with importance weights in gradient descent is via multiplication of the gra ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
(Show Context)
An importance weight quantifies the relative importance of one example over another, coming up in applications of boosting, asymmetric classification costs, reductions, and active learning. The standard approach for dealing with importance weights in gradient descent is via multiplication of the gradient. We first demonstrate the problems of this approach when importance weights are large, and argue in favor of more sophisticated ways for dealing with them. We then develop an approach which enjoys an invariance property: that updating twice with importance weight h is equivalent to updating once with importance weight 2h. For many important losses this has a closed form update which satisfies standard regret guarantees when all examples have h = 1. We also briefly discuss two other reasonable approaches for handling large importance weights. Empirically, these approaches yield substantially superior prediction with similar computational performance while reducing the sensitivity of the algorithm to the exact setting of the learning rate. We apply these to online active learning yielding an extraordinarily fast active learning algorithm that works even in the presence of adversarial noise. 1