Results 1  10
of
3,009
Generalized Additive Models
, 1984
"... Likelihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj) ..."
Abstract

Cited by 2413 (46 self)
 Add to MetaCart
Likelihood based regression models, such as the normal linear regression model and the linear logistic model, assume a linear (or some other parametric) form for the covariate effects. We introduce the Local Scotinq procedure which replaces the liner form C Xjpj by a sum of smooth functions C Sj(Xj)a The Sj(.) ‘s are unspecified functions that are estimated using scatterplot smoothers. The technique is applicable to any likelihoodbased regression model: the class of Generalized Linear Models contains many of these. In this class, the Locul Scoring procedure replaces the linear predictor VI = C Xj@j by the additive predictor C ai ( hence, the name Generalized Additive Modeb. Local Scoring can also be applied to nonstandard models like Cox’s proportional hazards model for survival data. In a number of real data examples, the Local Scoring procedure proves to be useful in uncovering nonlinear covariate effects. It has the advantage of being completely automatic, i.e. no “detective work ” is needed on the part of the statistician. In a further generalization, the technique is modified to estimate the form of the link function for generalized linear models. The Local Scoring procedure is shown to be asymptotically equivalent to Local Likelihood estimation, another technique for estimating smooth covariate functions. They are seen to produce very similar results with real data, with Local Scoring being considerably faster. As a theoretical underpinning, we view Local Scoring and Local Likelihood as empirical maximizers of the ezpected loglikelihood, and this makes clear their connection to standard maximum likelihood estimation. A method for estimating the “degrees of freedom” of the procedures is also given.
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most...
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
, 2010
"... ..."
(Show Context)
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 914 (61 self)
 Add to MetaCart
Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized likelihood approaches are proposed to handle these kinds of problems. The proposed methods select variables and estimate coefficients simultaneously. Hence they enable us to construct confidence intervals for estimated parameters. The proposed approaches are distinguished from others in that the penalty functions are symmetric, nonconcave on (0, ∞), and have singularities at the origin to produce sparse solutions. Furthermore, the penalty functions should be bounded by a constant to reduce bias and satisfy certain conditions to yield continuous solutions. A new algorithm is proposed for optimizing penalized likelihood functions. The proposed ideas are widely applicable. They are readily applied to a variety of parametric models such as generalized linear models and robust regression models. They can also be applied easily to nonparametric modeling by using wavelets and splines. Rates of convergence of the proposed penalized likelihood estimators are established. Furthermore, with proper choice of regularization parameters, we show that the proposed estimators perform as well as the oracle procedure in variable selection; namely, they work as well as if the correct submodel were known. Our simulation shows that the newly proposed methods compare favorably with other variable selection techniques. Furthermore, the standard error formulas are tested to be accurate enough for practical applications.
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 758 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Missing data: Our view of the state of the art
 Psychological Methods
, 2002
"... Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missingdata problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random ..."
Abstract

Cited by 689 (1 self)
 Add to MetaCart
(Show Context)
Statistical procedures for missing data have vastly improved, yet misconception and unsound practice still abound. The authors frame the missingdata problem, review methods, offer advice, and raise issues that remain unresolved. They clear up common misunderstandings regarding the missing at random (MAR) concept. They summarize the evidence against older procedures and, with few exceptions, discourage their use. They present, in both technical and practical language, 2 general approaches that come highly recommended: maximum likelihood (ML) and Bayesian multiple imputation (MI). Newer developments are discussed, including some for dealing with missing data that are not MAR. Although not yet in the mainstream, these procedures may eventually extend the ML and MI methods that currently represent the state of the art. Why do missing data create such difficulty in scientific research? Because most data analysis procedures were not designed for them. Missingness is usually a nuisance, not the main focus of inquiry, but
The Infinite Hidden Markov Model
 Machine Learning
, 2002
"... We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. Th ..."
Abstract

Cited by 629 (41 self)
 Add to MetaCart
We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying statetransition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infiniteconsider, for example, symbols being possible words appearing in English text.
Predicting the Semantic Orientation of Adjectives
, 1997
"... We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev ..."
Abstract

Cited by 460 (5 self)
 Add to MetaCart
(Show Context)
We identify and validate from a large corpus constraints from conjunctions on the positive or negative semantic orientation of the conjoined adjectives. A loglinear regression model uses these constraints to predict whether conjoined adjectives are of same or different orientations, achiev ing 82% accuracy in this task when each conjunction is considered independently.