Results 11  20
of
344
COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY
"... Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constru ..."
Abstract

Cited by 161 (15 self)
 Add to MetaCart
Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ and a combinatorial decoding algorithm to match. We present a unified approach to these two classes of sparse signal recovery algorithms. The unifying elements are the adjacency matrices of highquality unbalanced expanders. We generalize the notion of Restricted Isometry Property (RIP), crucial to compressed sensing results for signal recovery, from the Euclidean norm to the ℓp norm for p ≈ 1, and then show that unbalanced expanders are essentially equivalent to RIPp matrices. From known deterministic constructions for such matrices, we obtain new deterministic measurement matrix constructions and algorithms for signal recovery which, compared to previous deterministic algorithms, are superior in either the number of measurements or in noise tolerance. 1.
Issues in Data Stream Management
, 2003
"... Traditional databases store sets of relatively static records with no predefined notion of time, unless timestamp attributes are explicitly added. While this model adequately represents commercial catalogues or repositories of personal information, many current and emerging applications require sup ..."
Abstract

Cited by 159 (6 self)
 Add to MetaCart
Traditional databases store sets of relatively static records with no predefined notion of time, unless timestamp attributes are explicitly added. While this model adequately represents commercial catalogues or repositories of personal information, many current and emerging applications require support for online analysis of rapidly changing data streams. Limitations of traditional DBMSs in supporting streaming applications have been recognized, prompting research to augment existing technologies and build new systems to manage streaming data. The purpose of this paper is to review recent work in data stream management systems, with an emphasis on application requirements, data models, continuous query languages, and query evaluation.
Approximate Counts and Quantiles over Sliding Windows
 Proc. of ACM PODS Symp
, 2004
"... We consider the problem of maintaining approximate counts and quantiles over fixed and variablesize sliding windows in limited space. For quantiles, we present deterministic algorithms whose space requirements are O ( 1! log 1! logN) and O( ..."
Abstract

Cited by 98 (1 self)
 Add to MetaCart
(Show Context)
We consider the problem of maintaining approximate counts and quantiles over fixed and variablesize sliding windows in limited space. For quantiles, we present deterministic algorithms whose space requirements are O ( 1! log 1! logN) and O(
A Geometric Approach to Monitoring Threshold Functions Over Distributed Data Streams
 In ACM SIGMOD
"... Monitoring data streams in a distributed system is the focus of much research in recent years. Most of the proposed schemes, however, deal with monitoring simple aggregated values, such as the frequency of appearance of items in the streams. More involved challenges, such as the important task of f ..."
Abstract

Cited by 89 (20 self)
 Add to MetaCart
(Show Context)
Monitoring data streams in a distributed system is the focus of much research in recent years. Most of the proposed schemes, however, deal with monitoring simple aggregated values, such as the frequency of appearance of items in the streams. More involved challenges, such as the important task of feature selection (e.g., by monitoring the information gain of various features), still require very high communication overhead using naive, centralized algorithms. We present a novel geometric approach by which an arbitrary global monitoring task can be split into a set of constraints applied locally on each of the streams. The constraints are used to locally filter out data increments that do not affect the monitoring outcome, thus avoiding unnecessary communication. As a result, our approach enables monitoring of arbitrary threshold functions over distributed data streams in an efficient manner. We present experimental results on realworld data which demonstrate that our algorithms are highly scalable, and considerably reduce communication load in comparison to centralized algorithms. 1.
What's New: Finding Significant Differences in Network Data Streams
 in Proc. of IEEE Infocom
, 2004
"... Monitoring and analyzing network traffic usage patterns is vital for managing IP Networks. An important problem is to provide network managers with information about changes in traffic, informing them about "what's new". Specifically, we focus on the challenge of finding significantly ..."
Abstract

Cited by 85 (8 self)
 Add to MetaCart
(Show Context)
Monitoring and analyzing network traffic usage patterns is vital for managing IP Networks. An important problem is to provide network managers with information about changes in traffic, informing them about "what's new". Specifically, we focus on the challenge of finding significantly large differences in traffic: over time, between interfaces and between routers. We introduce the idea of a deltoid: an item that has a large difference, whether the difference is absolute, relative or variational. We present novel...
Finding (recently) frequent items in distributed data streams
"... We consider the problem of maintaining frequency counts for items occurring frequently in the union of multiple distributed data streams. Naïve methods of combining approximate frequency counts from multiple nodes tend to result in excessively large data structures that are costly to transfer among ..."
Abstract

Cited by 80 (2 self)
 Add to MetaCart
(Show Context)
We consider the problem of maintaining frequency counts for items occurring frequently in the union of multiple distributed data streams. Naïve methods of combining approximate frequency counts from multiple nodes tend to result in excessively large data structures that are costly to transfer among nodes. To minimize communication requirements, the degree of precision maintained by each node while counting item frequencies must be managed carefully. We introduce the concept of a precision gradient for managing precision when nodes are arranged in a hierarchical communication structure. We then study the optimization problem of how to set the precision gradient so as to minimize communication, and provide optimal solutions that minimize worstcase communication load over all possible inputs. We then introduce a variant designed to perform well in practice, with input data that does not conform to worstcase characteristics. We verify the effectiveness of our approach empirically using realworld data, and show that our methods incur substantially less communication than naïve approaches while providing the same error guarantees on answers. 1.
Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window
 In ICDM
, 2004
"... This paper considers the problem of mining closed frequent itemsets over a sliding window using limited memory space. We design a synopsis data structure to monitor transactions in the sliding window so that we can output the current closed frequent itemsets at any time. Due to time and memory const ..."
Abstract

Cited by 78 (4 self)
 Add to MetaCart
(Show Context)
This paper considers the problem of mining closed frequent itemsets over a sliding window using limited memory space. We design a synopsis data structure to monitor transactions in the sliding window so that we can output the current closed frequent itemsets at any time. Due to time and memory constraints, the synopsis data structure cannot monitor all possible itemsets. However, monitoring only frequent itemsets will make it impossible to detect new itemsets when they become frequent. In this paper, we introduce a compact data structure, the closed enumeration tree (CET), to maintain a dynamically selected set of itemsets over a slidingwindow. The selected itemsets consist of a boundary between closed frequent itemsets and the rest of the itemsets. Concept drifts in a data stream are reflected by boundary movements in the CET. In other words, a status change of any itemset (e.g., from nonfrequent to frequent) must occur through the boundary. Because the boundary is relatively stable, the cost of mining closed frequent itemsets over a sliding window is dramatically reduced to that of mining transactions that can possibly cause boundary movements in the CET. Our experiments show that our algorithm performs much better than previous approaches.
1 Sparse Recovery Using Sparse Matrices
"... Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to seve ..."
Abstract

Cited by 72 (13 self)
 Add to MetaCart
Abstract—We survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to several areas, including compressive sensing, data stream computing and group testing. I.
Streaming and sublinear approximation of entropy and information distances
 In ACMSIAM Symposium on Discrete Algorithms
, 2006
"... In most algorithmic applications which compare two distributions, information theoretic distances are more natural than standard ℓp norms. In this paper we design streaming and sublinear time property testing algorithms for entropy and various information theoretic distances. Batu et al posed the pr ..."
Abstract

Cited by 69 (13 self)
 Add to MetaCart
(Show Context)
In most algorithmic applications which compare two distributions, information theoretic distances are more natural than standard ℓp norms. In this paper we design streaming and sublinear time property testing algorithms for entropy and various information theoretic distances. Batu et al posed the problem of property testing with respect to the JensenShannon distance. We present optimal algorithms for estimating bounded, symmetric fdivergences (including the JensenShannon divergence and the Hellinger distance) between distributions in various property testing frameworks. Along the way, we close a (log n)/H gap between the upper and lower bounds for estimating entropy H, yielding an optimal algorithm over all values of the entropy. In a data stream setting (sublinear space), we give the first algorithm for estimating the entropy of a distribution. Our algorithm runs in polylogarithmic space and yields an asymptotic constant factor approximation scheme. An integral part of the algorithm is an interesting use of an F0 (the number of distinct elements in a set) estimation algorithm; we also provide other results along the space/time/approximation tradeoff curve. Our results have interesting structural implications that connect sublinear time and space constrained algorithms. The mediating model is the random order streaming model, which assumes the input is a random permutation of a multiset and was first considered by Munro and Paterson in 1980. We show that any property testing algorithm in the combined oracle model for calculating a permutation invariant functions can be simulated in the random order model in a single pass. This addresses a question raised by Feigenbaum et al regarding the relationship between property testing and stream algorithms. Further, we give a polylogspace PTAS for estimating the entropy of a one pass random order stream. This bound cannot be achieved in the combined oracle (generalized property testing) model. 1
Efficient Computation of Frequent and Topk Elements in Data Streams
 IN ICDT
, 2005
"... We propose an approximate integrated approach for solving both problems of finding the most popular k elements, and finding frequent elements in a data stream coming from a large domain. Our solution is space efficient and reports both frequent and topk elements with tight guarantees on errors. For ..."
Abstract

Cited by 69 (7 self)
 Add to MetaCart
We propose an approximate integrated approach for solving both problems of finding the most popular k elements, and finding frequent elements in a data stream coming from a large domain. Our solution is space efficient and reports both frequent and topk elements with tight guarantees on errors. For general data distributions, our topk algorithm returns k elements that have roughly the highest frequencies; and it uses limited space for calculating frequent elements. For realistic Zipfian data, the space requirement of the proposed algorithm for solving the exact frequent elements problem decreases dramatically with the parameter of the distribution; and for topk queries, the analysis ensures that only the topk elements, in the correct order, are reported. The experiments, using real and synthetic data sets, show space reductions with no loss in accuracy. Having proved the effectiveness of the proposed approach through both analysis and experiments, we extend it to be able to answer continuous queries about frequent and topk elements. Although the problems of incremental reporting of frequent and topk elements are useful in many applications, to the best of our knowledge, no solution has been proposed.