Results 11  20
of
1,176
Variational inference for Dirichlet process mixtures
 Bayesian Analysis
, 2005
"... Abstract. Dirichlet process (DP) mixture models are the cornerstone of nonparametric Bayesian statistics, and the development of MonteCarlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of nonparametric Bayesian methods to a variety of practical data analysis prob ..."
Abstract

Cited by 244 (27 self)
 Add to MetaCart
Abstract. Dirichlet process (DP) mixture models are the cornerstone of nonparametric Bayesian statistics, and the development of MonteCarlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of nonparametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow, and it is important to explore alternatives. One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003). Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias 2000; Ghahramani and Beal 2001; Blei et al. 2003). In this paper, we present a variational inference algorithm for DP mixtures. We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a largescale image analysis problem.
A game theoretic framework for bandwidth allocation and pricing in broadband networks
 IEEE/ACM TRANS. ON NETWORKING
, 2000
"... In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in highspeed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from ..."
Abstract

Cited by 238 (11 self)
 Add to MetaCart
(Show Context)
In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in highspeed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from the point of view of the whole system, but are also consistent with the fairness axioms of game theory. We first consider the centralized problem and then show that this procedure can be decentralized so that greedy optimization by users yields the system optimal bandwidth allocations. We propose a distributed algorithm for implementing the optimal and fair bandwidth allocation and provide conditions for its convergence. The paper concludes with the pricing of elastic connections based on users ’ bandwidth requirements and users’ budget. We show that the above bargaining framework can be used to characterize a rate allocation and a pricing policy which takes into account users’ budget in a fair way and such that the total network revenue is maximized.
Recent advances in hierarchical reinforcement learning
, 2003
"... A preliminary unedited version of this paper was incorrectly published as part of Volume ..."
Abstract

Cited by 229 (24 self)
 Add to MetaCart
(Show Context)
A preliminary unedited version of this paper was incorrectly published as part of Volume
Distributed average consensus with leastmeansquare deviation
 Journal of Parallel and Distributed Computing
, 2005
"... We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted averag ..."
Abstract

Cited by 205 (4 self)
 Add to MetaCart
(Show Context)
We consider a stochastic model for distributed average consensus, which arises in applications such as load balancing for parallel processors, distributed coordination of mobile autonomous agents, and network synchronization. In this model, each node updates its local variable with a weighted average of its neighbors ’ values, and each new value is corrupted by an additive noise with zero mean. The quality of consensus can be measured by the total meansquare deviation of the individual variables from their average, which converges to a steadystate value. We consider the problem of finding the (symmetric) edge weights that result in the least meansquare deviation in steady state. We show that this problem can be cast as a convex optimization problem, so the global solution can be found efficiently. We describe some computational methods for solving this problem, and compare the weights and the meansquare deviations obtained by this method and several other weight design methods.
Algorithms and applications for approximate nonnegative matrix factorization
 Computational Statistics and Data Analysis
, 2006
"... In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both spars ..."
Abstract

Cited by 204 (8 self)
 Add to MetaCart
(Show Context)
In this paper we discuss the development and use of lowrank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both sparsity and smoothness constraints for the resulting nonnegative matrix factors are discussed. The interpretability of NMF outputs in specific contexts are provided along with opportunities for future work in the modification of NMF algorithms for largescale and timevarying datasets. Key words: nonnegative matrix factorization, text mining, spectral data analysis, email surveillance, conjugate gradient, constrained least squares.
Dual methods for nonconvex spectrum optimization of multicarrier systems
 IEEE TRANS. COMMUN
, 2006
"... The design and optimization of multicarrier communications systems often involve a maximization of the total throughput subject to system resource constraints. The optimization problem is numerically difficult to solve when the problem does not have a convexity structure. This paper makes progress ..."
Abstract

Cited by 201 (7 self)
 Add to MetaCart
(Show Context)
The design and optimization of multicarrier communications systems often involve a maximization of the total throughput subject to system resource constraints. The optimization problem is numerically difficult to solve when the problem does not have a convexity structure. This paper makes progress toward solving optimization problems of this type by showing that under a certain condition called the timesharing condition, the duality gap of the optimization problem is always zero, regardless of the convexity of the objective function. Further, we show that the timesharing condition is satisfied for practical multiuser spectrum optimization problems in multicarrier systems in the limit as the number of carriers goes to infinity. This result leads to efficient numerical algorithms that solve the nonconvex problem in the dual domain. We show that the recently proposed optimal spectrum balancing algorithm for digital subscriber lines can be interpreted as a dual algorithm. This new interpretation gives rise to more efficient dual update methods. It also suggests ways in which the dual objective may be evaluated approximately, further improving the numerical efficiency of the algorithm. We propose a lowcomplexity iterative spectrum balancing algorithm based on these ideas, and show that the new algorithm achieves nearoptimal performance in many practical situations.
MAP estimation via agreement on trees: Messagepassing and linear programming
, 2002
"... We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound ..."
Abstract

Cited by 191 (9 self)
 Add to MetaCart
(Show Context)
We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of treestructured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: (a) a treerelaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and (b) a treereweighted maxproduct messagepassing algorithm that is related to but distinct from the maxproduct algorithm. In this way, we establish a connection between a certain LP relaxation of the modefinding problem, and a reweighted form of the maxproduct (minsum) messagepassing algorithm.
Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria
 IEEE Trans. On Audio, Speech and Lang. Processing
, 2007
"... Abstract—An unsupervised learning algorithm for the separation of sound sources in onechannel music signals is presented. The algorithm is based on factorizing the magnitude spectrogram of an input signal into a sum of components, each of which has a fixed magnitude spectrum and a timevarying gain ..."
Abstract

Cited by 189 (30 self)
 Add to MetaCart
(Show Context)
Abstract—An unsupervised learning algorithm for the separation of sound sources in onechannel music signals is presented. The algorithm is based on factorizing the magnitude spectrogram of an input signal into a sum of components, each of which has a fixed magnitude spectrum and a timevarying gain. Each sound source, in turn, is modeled as a sum of one or more components. The parameters of the components are estimated by minimizing the reconstruction error between the input spectrogram and the model, while restricting the component spectrograms to be nonnegative and favoring components whose gains are slowly varying and sparse. Temporal continuity is favored by using a cost term which is the sum of squared differences between the gains in adjacent frames, and sparseness is favored by penalizing nonzero gains. The proposed iterative estimation algorithm is initialized with random values, and the gains and the spectra are then alternatively updated using multiplicative update rules until the values converge. Simulation experiments were carried out using generated mixtures of pitched musical instrument samples and drum sounds. The performance of the proposed method was compared with independent subspace analysis and basic nonnegative matrix factorization, which are based on the same linear model. According to these simulations, the proposed method enables a better separation quality than the previous algorithms. Especially, the temporal continuity criterion improved the detection of pitched musical sounds. The sparseness criterion did not produce significant improvements. Index Terms—Acoustic signal analysis, audio source separation, blind source separation, music, nonnegative matrix factorization, sparse coding, unsupervised learning. I.
Using linear programming to decode binary linear codes
 IEEE TRANS. INFORM. THEORY
, 2005
"... A new method is given for performing approximate maximumlikelihood (ML) decoding of an arbitrary binary linear code based on observations received from any discrete memoryless symmetric channel. The decoding algorithm is based on a linear programming (LP) relaxation that is defined by a factor grap ..."
Abstract

Cited by 183 (9 self)
 Add to MetaCart
(Show Context)
A new method is given for performing approximate maximumlikelihood (ML) decoding of an arbitrary binary linear code based on observations received from any discrete memoryless symmetric channel. The decoding algorithm is based on a linear programming (LP) relaxation that is defined by a factor graph or paritycheck representation of the code. The resulting “LP decoder” generalizes our previous work on turbolike codes. A precise combinatorial characterization of when the LP decoder succeeds is provided, based on pseudocodewords associated with the factor graph. Our definition of a pseudocodeword unifies other such notions known for iterative algorithms, including “stopping sets, ” “irreducible closed walks, ” “trellis cycles, ” “deviation sets, ” and “graph covers.” The fractional distance ��— ™ of a code is introduced, which is a lower bound on the classical distance. It is shown that the efficient LP decoder will correct up to ��— ™ P I errors and that there are codes with ��— ™ a @ I A. An efficient algorithm to compute the fractional distance is presented. Experimental evidence shows a similar performance on lowdensity paritycheck (LDPC) codes between LP decoding and the minsum and sumproduct algorithms. Methods for tightening the LP relaxation to improve performance are also provided.
Simultaneous Routing and Resource Allocation via Dual Decomposition
, 2004
"... In wireless data networks the optimal routing of data depends on the link capacities which, in turn, are determined by the allocation of communications resources (such as transmit powers and bandwidths) to the links. The optimal performance of the network can only be achieved by simultaneous optimi ..."
Abstract

Cited by 171 (7 self)
 Add to MetaCart
In wireless data networks the optimal routing of data depends on the link capacities which, in turn, are determined by the allocation of communications resources (such as transmit powers and bandwidths) to the links. The optimal performance of the network can only be achieved by simultaneous optimization of routing and resource allocation. In this paper, we formulate the simultaneous routing and resource allocation problem and exploit problem structure to derive ef£cient solution methods. We use a capacitated multicommodity flow model to describe the data ¤ows in the network. We assume that the capacity of a wireless link is a concave and increasing function of the communications resources allocated to the link, and the communications resources for groups of links are limited. These assumptions allow us to formulate the simultaneous routing and resource allocation problem as a convex optimization problem over the network flow variables and the communications variables. These two sets of variables are coupled only through the link capacity constraints. We exploit this separable structure by dual decomposition. The resulting solution method attains the optimal coordination of data routing in the network layer and resource allocation in the radio control layer via pricing on the link capacities.