Results 1 - 10
of
545
Text Classification from Labeled and Unlabeled Documents using EM
- MACHINE LEARNING
, 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract
-
Cited by 1033 (15 self)
- Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve ...
Inductive learning algorithms and representations for text categorization,”
- in Proceedings of the International Conference on Information and Knowledge Management,
, 1998
"... ABSTRACT Text categorization -the assignment of natural language texts to one or more predefined categories based on their content -is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text ..."
Abstract
-
Cited by 652 (8 self)
- Add to MetaCart
ABSTRACT Text categorization -the assignment of natural language texts to one or more predefined categories based on their content -is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs) are particularly promising because they are very accurate, quick to train, and quick to evaluate.
Combating web spam with trustrank
- In VLDB
, 2004
"... Web spam pages use various techniques to achieve higher-than-deserved rankings in a search engine’s results. While human experts can identify spam, it is too expensive to manually evaluate a large number of pages. Instead, we propose techniques to semi-automatically separate reputable, good pages fr ..."
Abstract
-
Cited by 413 (3 self)
- Add to MetaCart
(Show Context)
Web spam pages use various techniques to achieve higher-than-deserved rankings in a search engine’s results. While human experts can identify spam, it is too expensive to manually evaluate a large number of pages. Instead, we propose techniques to semi-automatically separate reputable, good pages from spam. We first select a small set of seed pages to be evaluated by an expert. Once we manually identify the reputable seed pages, we use the link structure of the web to discover other pages that are likely to be good. In this paper we discuss possible ways to implement the seed selection and the discovery of good pages. We present results of experiments run on the World Wide Web indexed by AltaVista and evaluate the performance of our techniques. Our results show that we can effectively filter out spam from a significant fraction of the web, based on a good seed set of less than 200 sites. 1
Bursty and Hierarchical Structure in Streams
, 2002
"... A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. E-mail and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade aw ..."
Abstract
-
Cited by 394 (2 self)
- Add to MetaCart
A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. E-mail and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade away. The published literature in a particular research field can be seen to exhibit similar phenomena over a much longer time scale. Underlying much of the text mining work in this area is the following intuitive premise --- that the appearance of a topic in a document stream is signaled by a "burst of activity," with certain features rising sharply in frequency as the topic emerges.
From frequency to meaning : Vector space models of semantics
- Journal of Artificial Intelligence Research
, 2010
"... Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are begi ..."
Abstract
-
Cited by 347 (3 self)
- Add to MetaCart
(Show Context)
Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term–document, word–context, and pair–pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field. 1.
Support vector machines for spam categorization
- IEEE TRANSACTIONS ON NEURAL NETWORKS
, 1999
"... We study the use of support vector machines (SVM’s) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features ..."
Abstract
-
Cited by 342 (2 self)
- Add to MetaCart
We study the use of support vector machines (SVM’s) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM’s performed best when using binary features. For both data sets, boosting trees and SVM’s had acceptable test performance in terms of accuracy and speed. However, SVM’s had significantly less training time.
Attention-Sensitive Alerting
, 1998
"... We introduce utility-directed procedures for mediating the flow of potentially distracting alerts and communications to computer users. We present models and inference procedures that balance the context-sensitive costs of deferring alerts with the cost of interruption. We describe the challen ..."
Abstract
-
Cited by 230 (28 self)
- Add to MetaCart
We introduce utility-directed procedures for mediating the flow of potentially distracting alerts and communications to computer users. We present models and inference procedures that balance the context-sensitive costs of deferring alerts with the cost of interruption. We describe the challenge of reasoning about such costs under uncertainty via an analysis of user activity and the content of notifications. After introducing principles of attention-sensitive alerting, we focus on the problem of guiding alerts about email messages. We dwell on the problem of inferring the expected criticality of email and discuss work on the Priorities system, centering on prioritizing email by criticality and modulating the communication of notifications to users about the presence and nature of incoming email. 1 Introduction Multitasking computer systems provide great value to users by hosting numerous processes and applications simultaneously. However, the ongoing execution of mu...
Detecting Spam Web Pages through Content Analysis
- In Proceedings of international conference on World Wide Web 2006 Myle Ott, Yejin Choi, Claire Cardie
"... In this paper, we continue our investigations of “web spam”: the injection of artificially-created pages into the web in order to influence the results from search engines, to drive traffic to certain pages for fun or profit. This paper considers some previously-undescribed techniques for automatica ..."
Abstract
-
Cited by 207 (4 self)
- Add to MetaCart
(Show Context)
In this paper, we continue our investigations of “web spam”: the injection of artificially-created pages into the web in order to influence the results from search engines, to drive traffic to certain pages for fun or profit. This paper considers some previously-undescribed techniques for automatically detecting spam pages, examines the effectiveness of these techniques in isolation and when aggregated using classification algorithms. When combined, our heuristics correctly identify 2,037 (86.2%) of the 2,364 spam pages (13.8%) in our judged collection of 17,168 pages, while misidentifying 526 spam and non-spam pages (3.1%).
An Evaluation of Naive Bayesian Anti-Spam Filtering
, 2000
"... It has recently been argued that a Naive Bayesian classifier can be used to filter unsolicited bulk e-mail ("spam"). We conduct a thorough evaluation of this proposal on a corpus that we make publicly available, contributing towards standard benchmarks. At the same time we investigate the ..."
Abstract
-
Cited by 165 (1 self)
- Add to MetaCart
It has recently been argued that a Naive Bayesian classifier can be used to filter unsolicited bulk e-mail ("spam"). We conduct a thorough evaluation of this proposal on a corpus that we make publicly available, contributing towards standard benchmarks. At the same time we investigate the effect of attribute-set size, training-corpus size, lemmatization, and stop-lists on the filter's performance, issues that had not been previously explored. After introducing appropriate cost-sensitive evaluation measures, we reach the conclusion that additional safety nets are needed for the Naive Bayesian anti-spam filter to be viable in practice.
Opinion spam and analysis
- In Proceedings of the International Conference on Web Search and Web Data Mining (WSDM
, 2008
"... Evaluative texts on the Web have become a valuable source of opinions on products, services, events, individuals, etc. Recently, many researchers have studied such opinion sources as product reviews, forum posts, and blogs. However, existing research has been focused on classification and summarizat ..."
Abstract
-
Cited by 160 (19 self)
- Add to MetaCart
(Show Context)
Evaluative texts on the Web have become a valuable source of opinions on products, services, events, individuals, etc. Recently, many researchers have studied such opinion sources as product reviews, forum posts, and blogs. However, existing research has been focused on classification and summarization of opinions using natural language processing and data mining techniques. An important issue that has been neglected so far is opinion spam or trustworthiness of online opinions. In this paper, we study this issue in the context of product reviews, which are opinion rich and are widely used by consumers and product manufacturers. In the past two years, several startup companies also appeared which aggregate opinions from product reviews. It is thus high time to study spam in reviews. To the best of our knowledge, there is still no published study on this topic, although Web spam and email spam have been investigated extensively. We will see that opinion spam is quite different from Web spam and email spam, and thus requires different detection techniques. Based on the analysis of 5.8 million reviews and 2.14 million reviewers from amazon.com, we show that opinion spam in reviews is widespread. This paper analyzes such spam activities and presents some novel techniques to detect them.