Results 1  10
of
2,444
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1230 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondence between the graph Laplacian, the Laplace Beltrami operator on the manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for representing the highdimensional data. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has localitypreserving properties and a natural connection to clustering. Some potential applications and illustrative examples are discussed.
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 781 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter excerpt from the author’s
doctoral thesis (Zhu, 2005). However the author plans to update the online version frequently to incorporate the latest development in the field. Please obtain the latest
version at http://www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
Laplacian eigenmaps and spectral techniques for embedding and clustering.
 Proceeding of Neural Information Processing Systems,
, 2001
"... Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in ..."
Abstract

Cited by 667 (7 self)
 Add to MetaCart
Abstract Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami op erator on a manifold , and the connections to the heat equation , we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered. In many areas of artificial intelligence, information retrieval and data mining, one is often confronted with intrinsically low dimensional data lying in a very high dimensional space. For example, gray scale n x n images of a fixed object taken with a moving camera yield data points in rn: n2 . However , the intrinsic dimensionality of the space of all images of t he same object is the number of degrees of freedom of the camera in fact the space has the natural structure of a manifold embedded in rn: n2 . While there is a large body of work on dimensionality reduction in general, most existing approaches do not explicitly take into account the structure of the manifold on which the data may possibly reside. Recently, there has been some interest (Tenenbaum et aI, 2000 ; The core algorithm is very simple, has a few local computations and one sparse eigenvalu e problem. The solution reflects th e intrinsic geom etric structure of the manifold. Th e justification comes from the role of the Laplacian op erator in providing an optimal emb edding. Th e Laplacian of the graph obtained from the data points may be viewed as an approximation to the LaplaceBeltrami operator defined on the manifold. The emb edding maps for the data come from approximations to a natural map that is defined on the entire manifold. The framework of analysis
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
(Show Context)
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graphbased approaches) we obtain a natural outofsample extension to novel examples and so are able to handle both transductive and truly semisupervised settings. We present experimental evidence suggesting that our semisupervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
Robust principal component analysis?
 Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the ..."
Abstract

Cited by 564 (26 self)
 Add to MetaCart
(Show Context)
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a lowrank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the lowrank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 561 (20 self)
 Add to MetaCart
(Show Context)
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 501 (4 self)
 Add to MetaCart
(Show Context)
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
Locality Preserving Projection,"
 Neural Information Processing System,
, 2004
"... Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the ..."
Abstract

Cited by 415 (16 self)
 Add to MetaCart
(Show Context)
Abstract Many problems in information processing involve some form of dimensionality reduction. In this paper, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) a classical linear technique that projects the data along the directions of maximal variance. When the high dimensional data lies on a low dimensional manifold embedded in the ambient space, the Locality Preserving Projections are obtained by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a result, LPP shares many of the data representation properties of nonlinear techniques such as Laplacian Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more crucially is defined everywhere in ambient space rather than just on the training data points. This is borne out by illustrative examples on some high dimensional data sets.
Face recognition using laplacianfaces
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2005
"... Abstract—We propose an appearancebased face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) wh ..."
Abstract

Cited by 392 (38 self)
 Add to MetaCart
(Show Context)
Abstract—We propose an appearancebased face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition. Index Terms—Face recognition, principal component analysis, linear discriminant analysis, locality preserving projections, face manifold, subspace learning. 1
Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds
 Journal of Machine Learning Research
, 2003
"... The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation. ..."
Abstract

Cited by 385 (10 self)
 Add to MetaCart
The problem of dimensionality reduction arises in many fields of information processing, including machine learning, data compression, scientific visualization, pattern recognition, and neural computation.