Results 1  10
of
26
PrimalDual InteriorPoint Methods for SelfScaled Cones
 SIAM Journal on Optimization
, 1995
"... In this paper we continue the development of a theoretical foundation for efficient primaldual interiorpoint algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are selfscaled (see [9]). The class of problems under consideration includes li ..."
Abstract

Cited by 205 (12 self)
 Add to MetaCart
(Show Context)
In this paper we continue the development of a theoretical foundation for efficient primaldual interiorpoint algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are selfscaled (see [9]). The class of problems under consideration includes linear programming, semidefinite programming and quadratically constrained quadratic programming problems. For such problems we introduce a new definition of affinescaling and centering directions. We present efficiency estimates for several symmetric primaldual methods that can loosely be classified as pathfollowing methods. Because of the special properties of these cones and barriers, two of our algorithms can take steps that go typically a large fraction of the way to the boundary of the feasible region, rather than being confined to a ball of unit radius in the local norm defined by the Hessian of the barrier.
On the Riemannian geometry defined by selfconcordant barriers and interiorpoint methods
 Found. Comput. Math
"... We consider the Riemannian geometry defined on a convex set by the Hessian of a selfconcordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interiorpoint methods for optimizing a linear function over the intersection of the set with ..."
Abstract

Cited by 44 (0 self)
 Add to MetaCart
(Show Context)
We consider the Riemannian geometry defined on a convex set by the Hessian of a selfconcordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interiorpoint methods for optimizing a linear function over the intersection of the set with an affine manifold. We show that algorithms that follow the primaldual central path are in some sense close to optimal. The same is true for methods that follow the shifted primaldual central path among certain infeasibleinteriorpoint methods. We also compute the geodesics in several simple sets. ∗ Copyright (C) by SpringerVerlag. Foundations of Computational Mathewmatics 2 (2002), 333–361.
InfeasibleStart PrimalDual Methods And Infeasibility Detectors For Nonlinear Programming Problems
 Mathematical Programming
, 1996
"... In this paper we present several "infeasiblestart" pathfollowing and potentialreduction primaldual interiorpoint methods for nonlinear conic problems. These methods try to find a recession direction of the feasible set of a selfdual homogeneous primaldual problem. The methods under ..."
Abstract

Cited by 38 (6 self)
 Add to MetaCart
(Show Context)
In this paper we present several "infeasiblestart" pathfollowing and potentialreduction primaldual interiorpoint methods for nonlinear conic problems. These methods try to find a recession direction of the feasible set of a selfdual homogeneous primaldual problem. The methods under consideration generate an fflsolution for an fflperturbation of an initial strictly (primal and dual) feasible problem in O( p ln fflae f ) iterations, where is the parameter of a selfconcordant barrier for the cone, ffl is a relative accuracy and ae f is a feasibility measure. We also discuss the behavior of pathfollowing methods as applied to infeasible problems. We prove that strict infeasibility (primal or dual) can be detected in O( p ln ae \Delta ) iterations, where ae \Delta is a primal or dual infeasibility measure. 1 Introduction Nesterov and Nemirovskii [9] first developed and investigated extensions of several classes of interiorpoint algorithms for linear programming t...
Homogeneous InteriorPoint Algorithms for Semidefinite Programming
 Department of Mathematics, The University of Iowa
, 1995
"... A simple homogeneous primaldual feasibility model is proposed for semidefinite programming (SDP) problems. Two infeasibleinteriorpoint algorithms are applied to the homogeneous formulation. The algorithms do not need big M initialization. If the original SDP problem has a solution, then both algo ..."
Abstract

Cited by 37 (8 self)
 Add to MetaCart
A simple homogeneous primaldual feasibility model is proposed for semidefinite programming (SDP) problems. Two infeasibleinteriorpoint algorithms are applied to the homogeneous formulation. The algorithms do not need big M initialization. If the original SDP problem has a solution, then both algorithms find an fflapproximate solution (i.e., a solution with residual error less than or equal to ffl) in at most O( p n ln(ae ffl 0 =ffl)) steps, where ae is the trace norm of a solution and ffl 0 is the residual error at the (normalized) starting point. A simple way of monitoring possible infeasibility of the original SDP problem is provided such that in at most O( p n ln(aeffl 0 =ffl)) steps either an fflapproximate solution is obtained, or it is determined that there is no solution with trace norm less than or equal to a given number ae ? 0. Key Words: semidefinite programming, homogeneous interiorpoint algorithm, polynomial complexity. Abbreviated Title: Homogeneous al...
SelfScaled Cones and InteriorPoint Methods in Nonlinear Programming
 Working Paper, CORE, Catholic University of Louvain, LouvainlaNeuve
, 1994
"... : This paper provides a theoretical foundation for efficient interiorpoint algorithms for nonlinear programming problems expressed in conic form, when the cone and its associated barrier are selfscaled. For such problems we devise longstep and symmetric primaldual methods. Because of the special ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
(Show Context)
: This paper provides a theoretical foundation for efficient interiorpoint algorithms for nonlinear programming problems expressed in conic form, when the cone and its associated barrier are selfscaled. For such problems we devise longstep and symmetric primaldual methods. Because of the special properties of these cones and barriers, our algorithms can take steps that go typically a large fraction of the way to the boundary of the feasible region, rather than being confined to a ball of unit radius in the local norm defined by the Hessian of the barrier. Key words: Nonlinear Programming, conical form, interior point algorithms, selfconcordant barrier, selfscaled cone, selfscaled barrier, pathfollowing algorithms, potentialreduction algorithms. AMS 1980 subject classification. Primary: 90C05, 90C25, 65Y20. CORE, Catholic University of Louvain, LouvainlaNeuve, Belgium. Email: nesterov@core.ucl.ac.be. Part of this work was done while the author was visiting the Cornell C...
Advances in convex optimization: Conic programming
 In Proceedings of International Congress of Mathematicians
, 2007
"... Abstract. During the last two decades, major developments in convex optimization were focusing on conic programming, primarily, on linear, conic quadratic and semidefinite optimization. Conic programming allows to reveal rich structure which usually is possessed by a convex program and to exploit ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
(Show Context)
Abstract. During the last two decades, major developments in convex optimization were focusing on conic programming, primarily, on linear, conic quadratic and semidefinite optimization. Conic programming allows to reveal rich structure which usually is possessed by a convex program and to exploit this structure in order to process the program efficiently. In the paper, we overview the major components of the resulting theory (conic duality and primaldual interior point polynomial time algorithms), outline the extremely rich “expressive abilities ” of conic quadratic and semidefinite programming and discuss a number of instructive applications.
Interiorpoint methods for optimization
, 2008
"... This article describes the current state of the art of interiorpoint methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twen ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
This article describes the current state of the art of interiorpoint methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twenty years.
Polynomiality of PrimalDual Affine Scaling Algorithms for Nonlinear Complementarity Problems
, 1995
"... This paper provides an analysis of the polynomiality of primaldual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu's scaled Lipschitz condition, but is also applicable to ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
This paper provides an analysis of the polynomiality of primaldual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu's scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primaldual affine scaling algorithms generates an approximate solution (given a precision ffl) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial of n, ln(1=ffl) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in [13].
A proximalgradient homotopy method for the sparse leastsquares problem
 SIAM Journal on Optimization
"... ar ..."
(Show Context)
Multiparameter surfaces of analytic centers and longstep pathfollowing interior point methods
 RESEARCH REPORT 2, OPTIMIZATION LABORATORY, FACULTY OF INDUSTRIAL ENGINEERING AND MANAGEMENT, TECHNION  ISRAEL INSTITUTE OF TECHNOLOGY
, 1994
"... We develop a longstep polynomial time version of the Method of Analytic Centers for nonlinear convex problems. The method traces a multiparameter surface of analytic centers rather than the usual path, which allows to handle cases with noncentered and possibly infeasible starting point. ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
We develop a longstep polynomial time version of the Method of Analytic Centers for nonlinear convex problems. The method traces a multiparameter surface of analytic centers rather than the usual path, which allows to handle cases with noncentered and possibly infeasible starting point.