Results 1 - 10
of
150
A comparative study of energy minimization methods for Markov random fields
- IN ECCV
, 2006
"... One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Ran ..."
Abstract
-
Cited by 415 (36 self)
- Add to MetaCart
(Show Context)
One of the most exciting advances in early vision has been the development of efficient energy minimization algorithms. Many early vision tasks require labeling each pixel with some quantity such as depth or texture. While many such problems can be elegantly expressed in the language of Markov Random Fields (MRF’s), the resulting energy minimization problems were widely viewed as intractable. Recently, algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: for example, such methods form the basis for almost all the top-performing stereo methods. Unfortunately, most papers define their own energy function, which is minimized with a specific algorithm of their choice. As a result, the tradeoffs among different energy minimization algorithms are not well understood. In this paper we describe a set of energy minimization benchmarks, which we use to compare the solution quality and running time of several common energy minimization algorithms. We investigate three promising recent methods—graph cuts, LBP, and tree-reweighted message passing—as well as the well-known older iterated conditional modes (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching and interactive segmentation. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods with minimal overhead. We expect that the availability of our benchmarks and interface will make it significantly easier for vision researchers to adopt the best method for their specific problems. Benchmarks, code, results and images are available at
A general heuristic for vehicle routing problems
- Computers & Operations Research
, 2007
"... We present a unified heuristic, which is able to solve five different variants of the vehicle routing problem: the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing pr ..."
Abstract
-
Cited by 89 (3 self)
- Add to MetaCart
(Show Context)
We present a unified heuristic, which is able to solve five different variants of the vehicle routing problem: the vehicle routing problem with time windows (VRPTW), the capacitated vehicle routing problem (CVRP), the multi-depot vehicle routing problem (MDVRP), the site dependent vehicle routing problem (SDVRP) and the open vehicle routing problem (OVRP). All problem variants are transformed to a rich pickup and delivery model and solved using the Adaptive Large Neighborhood Search (ALNS) framework presented in Ropke and Pisinger (2004). The ALNS framework is an extension of the Large Neighborhood Search framework by Shaw (1998) with an adaptive layer. This layer adaptively chooses among a number of insertion and removal heuristics, to intensify and diversify the search. The presented approach has a number of advantages: ALNS provides solutions of very high quality, the algorithm is robust, and to some extent self-calibrating. Moreover, the unified model allows the dispatcher to mix various variants of VRP problems for individual customers or vehicles. As we believe that the ALNS framework can be applied to a large number of tightly constrained optimization problems, a general description of the framework is given, and it is discussed how the various components can be designed in a particular setting. The paper is concluded with a computational study, in which the five different variants of the vehicle routing problem are considered on standard benchmark tests from the literature. The outcome of the tests is promising as the algorithm is able to improve 183 best known solutions out of 486 benchmark tests. The heuristic has also shown promising results for a large class of vehicle routing problems with backhauls, as demonstrated in Ropke and Pisinger (2005).
Combining metaheuristics and exact algorithms in combinatorial optimization: a survey and classification
- In: Proc. the First International Work-Conference on the Interplay Between Natural and Artificial Computation, LNCS
, 2005
"... Abstract. In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heu ..."
Abstract
-
Cited by 30 (3 self)
- Add to MetaCart
(Show Context)
Abstract. In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction. 1
Hybrid variable neighbourhood approaches to university exam timetabling
, 2006
"... Abstract. In this paper, we investigate variable neighbourhood search (VNS) approaches for the university examination timetabling problem. In addition to a basic VNS method, we introduce variants of the technique with different initialisation methods including a biased VNS and its hybridisation with ..."
Abstract
-
Cited by 26 (9 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper, we investigate variable neighbourhood search (VNS) approaches for the university examination timetabling problem. In addition to a basic VNS method, we introduce variants of the technique with different initialisation methods including a biased VNS and its hybridisation with a Genetic Algorithm. A number of different neighbourhood structures are analysed. It is demonstrated that the proposed technique is able to produce high quality solutions across a wide range of benchmark problem instances. In particular, we demonstrate that the Genetic Algorithm, which intelligently selects approporiate neighbourhoods to use within the biased VNS produces the best known results in the literature, in terms of solution quality, on some of the the benchmark instances, although it requires relatively large amount of computational time. Possible extensions to this overall approach are also discussed. 1
Incorporating inventory and routing costs in strategic location models
, 2006
"... We consider a supply chain design problem where the decision maker needs to decide the number and locations of the distribution centers (DCs). Customers face random demand, and each DC maintains a certain amount of safety stock in order to achieve a certain service level for the customers it serves. ..."
Abstract
-
Cited by 24 (3 self)
- Add to MetaCart
We consider a supply chain design problem where the decision maker needs to decide the number and locations of the distribution centers (DCs). Customers face random demand, and each DC maintains a certain amount of safety stock in order to achieve a certain service level for the customers it serves. The objective is to minimize the total cost that includes location costs and inventory costs at the DCs, and distribution costs in the supply chain. We show that this problem can be formulated as a nonlinear integer programming model, for which we propose a Lagrangian relaxation based solution algorithm. By exploring the structure of the problem, we find a low-order polynomial algorithm for the nonlinear integer programming problem that must be solved in solving the Lagrangian relaxation sub-problems. We present computational results for several instances of the problem with sizes ranging from 40 to 320 customers. Our results show the benefits of having an integrated supply chain design framework that includes location, inventory, and routing decisions in the same optimization model.
Meta-heuristics: The state of the art
- LOCAL SEARCH FOR PLANNING AND SCHEDULING
"... Meta-heuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics and science in reasonable time horizons. In this paper we give some insight into the state of the art of meta-heuristics. This prima ..."
Abstract
-
Cited by 20 (2 self)
- Add to MetaCart
(Show Context)
Meta-heuristics support managers in decision-making with robust tools that provide high-quality solutions to important applications in business, engineering, economics and science in reasonable time horizons. In this paper we give some insight into the state of the art of meta-heuristics. This primarily focuses on the significant progress which general frames within the meta-heuristics field have implied for solving combinatorial optimization problems, mainly those for planning and scheduling.
Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints
, 2002
"... We propose local search algorithms for the vehicle routing problem with soft time window constraints. The time window constraint for each customer is treated as a penalty function, which is very general in the sense that it can be non-convex and discontinuous as long as it is piecewise linear. The g ..."
Abstract
-
Cited by 18 (1 self)
- Add to MetaCart
We propose local search algorithms for the vehicle routing problem with soft time window constraints. The time window constraint for each customer is treated as a penalty function, which is very general in the sense that it can be non-convex and discontinuous as long as it is piecewise linear. The generality of time window constraints allows us to handle a wide variety of scheduling problems. As such an example, we mention in this paper an application to a production scheduling problem with inventory cost. In our algorithm, we use local search to assign customers to vehicles and to nd orders of customers for vehicles to visit. It employs a new neighborhood, called the cyclic exchange neighborhood, in addition to standard neighborhoods for the vehicle routing problem. After xing the order of customers for a vehicle to visit, we must determine the optimal start times of processing at customers so that the total penalty is minimized. We show that this problem can be eciently solved by using dynamic programming, which is then incorporated in our algorithm. We also report computational results for various benchmark instances of the vehicle routing problem, as well as real world instances of a production scheduling problem.
A Unified View on Hybrid Metaheuristics
, 2006
"... Abstract. Manifold possibilities of hybridizing individual metaheuristics with each other and/or with algorithms from other fields exist. A large number of publications documents the benefits and great success of such hybrids. This article overviews several popular hybridization approaches and class ..."
Abstract
-
Cited by 17 (3 self)
- Add to MetaCart
(Show Context)
Abstract. Manifold possibilities of hybridizing individual metaheuristics with each other and/or with algorithms from other fields exist. A large number of publications documents the benefits and great success of such hybrids. This article overviews several popular hybridization approaches and classifies them based on various characteristics. In particular with respect to low-level hybrids of different metaheuristics, a unified view based on a common pool template is described. It helps in making similarities and different key components of existing metaheuristics explicit. We then consider these key components as a toolbox for building new, effective hybrid metaheuristics. This approach of thinking seems to be superior to sticking too strongly to the philosophies and historical backgrounds behind the different metaheuristic paradigms. Finally, particularly promising possibilities of combining metaheuristics with constraint programming and integer programming techniques are highlighted. 1
A Tutorial on Variable Neighborhood Search
- LES CAHIERS DU GERAD, HEC MONTREAL AND GERAD
, 2003
"... Variable Neighborhood Search (VNS) is a recent metaheuristic, or framework for building heuristics, which exploits systematically the idea of neighborhood change, both in the descent to local minima and in the escape from the valleys which contain them. In this tutorial we first present the ingre ..."
Abstract
-
Cited by 16 (3 self)
- Add to MetaCart
Variable Neighborhood Search (VNS) is a recent metaheuristic, or framework for building heuristics, which exploits systematically the idea of neighborhood change, both in the descent to local minima and in the escape from the valleys which contain them. In this tutorial we first present the ingredients of VNS, i.e., Variable Neighborhood Descent (VND) and Reduced VNS (RVNS) followed by the basic and then the general scheme of VNS itself which contain both of them. Extensions are presented, in particular Skewed VNS (SVNS) which enhances exploration of far away valleys and Variable Neighborhood Decomposition Search (VNDS), a two-level scheme for solution of large instances of various problems. In each case, we present the scheme, some illustrative examples and questions to be addressed in order to obtain an efficient implementation.