Results 1  10
of
99
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
(Show Context)
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 397 (2 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in d , the running time increases to O(n(log n) ). For every fixed c, d the running time is n ⅐ poly(log n), that is nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d ). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constantfactor approximation. We also give efficient approximation schemes for Euclidean MinCost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as ᐉ p for p Ն 1 or other Minkowski norms). They also have simple parallel (i.e., NC) implementations.
Approximation schemes for Euclidean kMedians And Related Problems
 In Proc. 30th Annu. ACM Sympos. Theory Comput
, 1998
"... In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in space, such that the sum of the distances from each of the points of S to the nearest median is minimized. This paper gives an approximation scheme for the plane that ..."
Abstract

Cited by 142 (3 self)
 Add to MetaCart
(Show Context)
In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in space, such that the sum of the distances from each of the points of S to the nearest median is minimized. This paper gives an approximation scheme for the plane that for any c > 0 produces a solution of cost at most 1 + 1/c times the optimum and runs in time O(n O(c+1) ). The approximation scheme also generalizes to some problems related to kmedian. Our methodology is to extend Arora's [1, 2] techniques for the TSP, which hitherto seemed inapplicable to problems such as the kmedian problem. 1 Introduction In the kmedian problem we are given a set S of n points in a metric space and a positive integer k. We desire to locate k medians in the space, such that the sum of the distances from each of the points of S to the nearest median is minimized. Besides its intrinsic appeal as a cleanlystated, basic unsolved problem in combinatorial optimizatio...
Nearly Linear Time Approximation Schemes for Euclidean TSP and other Geometric Problems
, 1997
"... We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to ..."
Abstract

Cited by 92 (3 self)
 Add to MetaCart
(Show Context)
We present a randomized polynomial time approximation scheme for Euclidean TSP in ! 2 that is substantially more efficient than our earlier scheme in [2] (and the scheme of Mitchell [21]). For any fixed c ? 1 and any set of n nodes in the plane, the new scheme finds a (1+ 1 c )approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. (Our earlier scheme ran in n O(c) time.) For points in ! d the algorithm runs in O(n(log n) (O( p dc)) d\Gamma1 ) time. This time is polynomial (actually nearly linear) for every fixed c; d. Designing such a polynomialtime algorithm was an open problem (our earlier algorithm in [2] ran in superpolynomial time for d 3). The algorithm generalizes to the same set of Euclidean problems handled by the previous algorithm, including Steiner Tree, kTSP, kMST, etc, although for kTSP and kMST the running time gets multiplied by k. We also use our ideas to design nearlylinear time approximation schemes for Euclidean vers...
A New Rounding Procedure for the Assignment Problem with Applications to Dense Graph Arrangement Problems
, 2001
"... We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satis es any linear inequality, then with high probability, the new matching satis es that linear inequality in an approximate sense. This extends the wellkn ..."
Abstract

Cited by 78 (3 self)
 Add to MetaCart
We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satis es any linear inequality, then with high probability, the new matching satis es that linear inequality in an approximate sense. This extends the wellknown LP rounding procedure of Raghavan and Thompson, which is usually used to round fractional solutions of linear programs.
Experimental Analysis of Heuristics for the STSP
 Local Search in Combinatorial Optimization
, 2001
"... In this and the following chapter, we consider what approaches one should take when one is confronted with a realworld application of the TSP. What algorithms should be used under which circumstances? We ..."
Abstract

Cited by 68 (1 self)
 Add to MetaCart
In this and the following chapter, we consider what approaches one should take when one is confronted with a realworld application of the TSP. What algorithms should be used under which circumstances? We
A polynomialtime approximation scheme for weighted planar graph TSP
 PROC. 9TH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS, PP 33–41
, 1998
"... Given a planar Rraph on n nodes with costs (weights) on its edges, define;he distance between nodes i &d 2 as ’ the length of the shortest path between i and i. Consider this as &I instance of me & TSP. For any E> 6, our algorithm finds a salesman tour of total cost at most (1 + E) t ..."
Abstract

Cited by 58 (14 self)
 Add to MetaCart
Given a planar Rraph on n nodes with costs (weights) on its edges, define;he distance between nodes i &d 2 as ’ the length of the shortest path between i and i. Consider this as &I instance of me & TSP. For any E> 6, our algorithm finds a salesman tour of total cost at most (1 + E) times optimal in time n”(llea). We also present a quasipolynomial time algorithm for the Steiner version of this problem.
A nearly lineartime approximation scheme for the Euclidean kmedian problem
, 2006
"... ..."
(Show Context)
GRAMMPS: A Generalized Mission Planner for Multiple Mobile Robots in Unstructured Environments
, 1998
"... This paper describes a fieldcapable system called GRAMMPS which addresses this problem by coupling a generalpurpose interpreted grammar for task definition with dynamic planning techniques. GRAMMPS supports a general class of local navigation systems and heterogeneous groups of robots, providing o ..."
Abstract

Cited by 47 (0 self)
 Add to MetaCart
(Show Context)
This paper describes a fieldcapable system called GRAMMPS which addresses this problem by coupling a generalpurpose interpreted grammar for task definition with dynamic planning techniques. GRAMMPS supports a general class of local navigation systems and heterogeneous groups of robots, providing optimal execution of missions given current world knowledge. Simulation runs illustrating the capabilities of this system are provided. Results showing successful runs of this system on two autonomous offroad vehicles are also given.
Approximation schemes for NPhard geometric optimization problems: A survey
 Mathematical Programming
, 2003
"... NPhard geometric optimization problems arise in many disciplines. Perhaps the most famous one is the traveling salesman problem (TSP): given n nodes in ℜ 2 (more generally, in ℜ d), find the minimum length path that visits each node exactly once. If distance is computed using the Euclidean norm (di ..."
Abstract

Cited by 44 (2 self)
 Add to MetaCart
(Show Context)
NPhard geometric optimization problems arise in many disciplines. Perhaps the most famous one is the traveling salesman problem (TSP): given n nodes in ℜ 2 (more generally, in ℜ d), find the minimum length path that visits each node exactly once. If distance is computed using the Euclidean norm (distance between nodes (x1, y1) and (x2, y2) is ((x1−x2) 2 +(y1−y2) 2) 1/2) then the problem is called Euclidean TSP. More generally the distance could be defined using other norms, such as ℓp norms for any p> 1. All these are subcases of the more general notion of a geometric norm or Minkowski norm. We will refer to the version of the problem with a general geometric norm as geometric TSP. Some other NPhard geometric optimization problems are Minimum Steiner Tree (“Given n points, find the smallest network connecting them,”), kTSP(“Given n points and a number k, find the shortest salesman tour that visits k points”), kMST (“Given n points and a number k, find the shortest tree that contains k points”), vehicle routing, degree restricted minimum