Results 1 - 10
of
87
Efficient Testing of Large Graphs
- Combinatorica
"... Let P be a property of graphs. An -test for P is a randomized algorithm which, given the ability to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or not, distinguishes, with high probability, between the case of G satisfying P and the case that it h ..."
Abstract
-
Cited by 176 (47 self)
- Add to MetaCart
(Show Context)
Let P be a property of graphs. An -test for P is a randomized algorithm which, given the ability to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or not, distinguishes, with high probability, between the case of G satisfying P and the case that it has to be modified by adding and removing more than n 2 edges to make it satisfy P . The property P is called testable, if for every there exists an -test for P whose total number of queries is independent of the size of the input graph. Goldreich, Goldwasser and Ron [8] showed that certain graph properties admit an -test. In this paper we make a first step towards a logical characterization of all testable graph properties, and show that properties describable by a very general type of coloring problem are testable. We use this theorem to prove that first order graph properties not containing a quantifier alternation of type "89" are always testable, while we show that some properties containing this alternation are not. Our results are proven using a combinatorial lemma, a special case of which, that may be of independent interest, is the following. A graph H is called -unavoidable in G if all graphs that differ from G in no more than jGj 2 places contain an induced copy of H . A graph H is called -abundant in G if G contains at least jGj jHj induced copies of H. If H is -unavoidable in G then it is also ( ; jHj)-abundant.
The art of uninformed decisions -- A primer to property testing
- BULLETIN OF THE EATCS
, 2001
"... ..."
A characterization of the (natural) graph properties testable with one-sided error
- Proc. of FOCS 2005
, 2005
"... The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property-testing. Our main result in this paper is a solution of an important special case of this general problem; Call a property tester oblivious if its decis ..."
Abstract
-
Cited by 107 (18 self)
- Add to MetaCart
The problem of characterizing all the testable graph properties is considered by many to be the most important open problem in the area of property-testing. Our main result in this paper is a solution of an important special case of this general problem; Call a property tester oblivious if its decisions are independent of the size of the input graph. We show that a graph property P has an oblivious one-sided error tester, if and only if P is (almost) hereditary. We stress that any ”natural ” property that can be tested (either with one-sided or with two-sided error) can be tested by an oblivious tester. In particular, all the testers studied thus far in the literature were oblivious. Our main result can thus be considered as a precise characterization of the ”natural” graph properties, which are testable with one-sided error. One of the main technical contributions of this paper is in showing that any hereditary graph property can be tested with one-sided error. This general result contains as a special case all the previous results about testing graph properties with one-sided error. These include the results of [20] and [5] about testing k-colorability, the characterization of [21] of the graph-partitioning problems that are testable with one-sided error, the induced vertex colorability properties of [3], the induced edge colorability properties of [14], a transformation from two-sided to one-sided error testing [21], as well as a recent result about testing monotone graph properties [10]. More importantly, as a special case of our main result, we infer that some of the most well studied graph properties, both in graph theory and computer science, are testable with one-sided error. Some of these properties are the well known graph properties of being Perfect, Chordal, Interval, Comparability, Permutation and more. None of these properties was previously known to be testable. 1
A combinatorial characterization of the testable graph properties: it’s all about regularity
- Proc. of STOC 2006
, 2006
"... A common thread in all the recent results concerning testing dense graphs is the use of Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant ..."
Abstract
-
Cited by 83 (15 self)
- Add to MetaCart
A common thread in all the recent results concerning testing dense graphs is the use of Szemerédi’s regularity lemma. In this paper we show that in some sense this is not a coincidence. Our first result is that the property defined by having any given Szemerédi-partition is testable with a constant number of queries. Our second and main result is a purely combinatorial characterization of the graph properties that are testable with a constant number of queries. This characterization (roughly) says that a graph property P can be tested with a constant number of queries if and only if testing P can be reduced to testing the property of satisfying one of finitely many Szemerédi-partitions. This means that in some sense, testing for Szemerédi-partitions is as hard as testing any testable graph property. We thus resolve one of the main open problems in the area of property-testing, which was first raised in the 1996 paper of Goldreich, Goldwasser and Ron [24] that initiated the study of graph property-testing. This characterization also gives an intuitive explanation as to what makes a graph property testable.
Property Testing
- Handbook of Randomized Computing, Vol. II
, 2000
"... this technical aspect (as in the bounded-degree model the closest graph having the property must have at most dN edges and degree bound d as well). ..."
Abstract
-
Cited by 75 (11 self)
- Add to MetaCart
(Show Context)
this technical aspect (as in the bounded-degree model the closest graph having the property must have at most dN edges and degree bound d as well).
Testing Subgraphs in Directed Graphs
- Proc. of the 35 th Annual Symp. on Theory of Computing (STOC
, 2003
"... Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and suppose that at least #n edges have to be deleted from it to make it H-free. We show that in this case G contains at least f(#, H)n copies of H. This is proved by establishing a directed version of Sz ..."
Abstract
-
Cited by 62 (15 self)
- Add to MetaCart
Let H be a fixed directed graph on h vertices, let G be a directed graph on n vertices and suppose that at least #n edges have to be deleted from it to make it H-free. We show that in this case G contains at least f(#, H)n copies of H. This is proved by establishing a directed version of Szemeredi's regularity lemma, and implies that for every H there is a one-sided error property tester whose query complexity is bounded by a function of # only for testing the property PH of being H-free.
Testing of Clustering
- In Proc. 41th Annu. IEEE Sympos. Found. Comput. Sci
, 2000
"... A set X of points in ! d is (k; b)-clusterable if X can be partitioned into k subsets (clusters) so that the diameter (alternatively, the radius) of each cluster is at most b. We present algorithms that by sampling from a set X , distinguish between the case that X is (k; b)-clusterable and the ca ..."
Abstract
-
Cited by 61 (14 self)
- Add to MetaCart
(Show Context)
A set X of points in ! d is (k; b)-clusterable if X can be partitioned into k subsets (clusters) so that the diameter (alternatively, the radius) of each cluster is at most b. We present algorithms that by sampling from a set X , distinguish between the case that X is (k; b)-clusterable and the case that X is ffl-far from being (k; b 0 )-clusterable for any given 0 ! ffl 1 and for b 0 b. In ffl-far from being (k; b 0 )-clusterable we mean that more than ffl \Delta jX j points should be removed from X so that it becomes (k; b 0 )-clusterable. We give algorithms for a variety of cost measures that use a sample of size independent of jX j, and polynomial in k and 1=ffl. Our algorithms can also be used to find approximately good clusterings. Namely, these are clusterings of all but an ffl-fraction of the points in X that have optimal (or close to optimal) cost. The benefit of our algorithms is that they construct an implicit representation of such clusterings in time independ...
Some 3CNF properties are hard to test
- In Proc. 35th ACM Symp. on Theory of Computing
, 2003
"... Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove that th ..."
Abstract
-
Cited by 59 (10 self)
- Add to MetaCart
(Show Context)
Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove that there are 3CNF formulae (with O(n) clauses) such that testing for the associated property requires Ω(n) queries, even with adaptive tests. This contrasts with 2CNF formulae, whose associated properties are always testable with O ( √ n) queries [E. Fischer et al., Monotonicity testing over general poset domains, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 474–483]. Notice that for every negative instance (i.e., an assignment that does not satisfy ϕ) there are three bit queries that witness this fact. Nevertheless, finding such a short witness requires reading a constant fraction of the input, even when the input is very far from satisfying the formula that is associated with the property. A property is linear if its elements form a linear space. We provide sufficient conditions for linear properties to be hard to test, and in the course of the proof include the following observations which are of independent interest: 1. In the context of testing for linear properties, adaptive two-sided error tests have no more power than nonadaptive one-sided error tests. Moreover, without loss of generality, any test for a linear property is a linear test. A linear test verifies that a portion of the input satisfies a set of linear constraints, which define the property, and rejects if and only if it finds a falsified constraint. A linear test is by definition nonadaptive and, when applied to linear properties, has a one-sided error. 2. Random low density parity check codes (which are known to have linear distance and constant rate) are not locally testable. In fact, testing such a code of length n requires Ω(n) queries.
Every monotone graph property is testable
- Proc. of STOC 2005
, 2005
"... A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most well-studied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper i ..."
Abstract
-
Cited by 52 (9 self)
- Add to MetaCart
A graph property is called monotone if it is closed under removal of edges and vertices. Many monotone graph properties are some of the most well-studied properties in graph theory, and the abstract family of all monotone graph properties was also extensively studied. Our main result in this paper is that any monotone graph property can be tested with one-sided error, and with query complexity depending only on ɛ. This result unifies several previous results in the area of property testing, and also implies the testability of well-studied graph properties that were previously not known to be testable. At the heart of the proof is an application of a variant of Szemerédi’s Regularity Lemma. The main ideas behind this application may be useful in characterizing all testable graph properties, and in generally studying graph property testing. As a byproduct of our techniques we also obtain additional results in graph theory and property testing, which are of independent interest. One of these results is that the query complexity of testing testable graph properties with one-sided error may be arbitrarily large. Another result, which significantly extends previous results in extremal graph-theory, is that for any monotone graph property P, any graph that is ɛ-far from satisfying P, contains a subgraph of size depending on ɛ only, which does not satisfy P. Finally, we prove the following compactness statement: If a graph G is ɛ-far from satisfying a (possibly infinite) set of monotone graph properties P, then it is at least δP(ɛ)-far from satisfying one of the properties.