Results 1 - 10
of
928
Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system
- NEUROIMAGE
, 1999
"... The surface of the human cerebral cortex is a highly folded sheet with the majority of its surface area buried within folds. As such, it is a difficult domain for computational as well as visualization purposes. We have therefore designed a set of procedures for modifying the representation of the c ..."
Abstract
-
Cited by 738 (57 self)
- Add to MetaCart
The surface of the human cerebral cortex is a highly folded sheet with the majority of its surface area buried within folds. As such, it is a difficult domain for computational as well as visualization purposes. We have therefore designed a set of procedures for modifying the representation of the cortical surface to (i) inflate it so that activity buried inside sulci may be visualized, (ii) cut and flatten an entire hemisphere, and (iii) transform a hemisphere into a simple parameterizable surface such as a sphere for the purpose of establishing a surface-based coordinate system.
Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
, 1995
"... Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical s ..."
Abstract
-
Cited by 675 (39 self)
- Add to MetaCart
Damage to the hippocampal system disrupts recent memory but leaves remote memory intact. The account presented here suggests that memories are first stored via synaptic changes in the hippocampal system, that these changes support reinstatement of recent memories in the neocortex, that neocortical synapses change a little on each reinstatement, and that remote memory is based on accumulated neocortical changes. Models that learn via changes to connections help explain this organization. These models discover the structure in ensembles of items if learning of each item is gradual and interleaved with learning about other items. This suggests that the neocortex learns slowly to discover the structure in ensembles of experiences. The hippocampal system permits rapid learning of new items without disrupting this structure, and reinstatement of new memories interleaves them with others to integrate them into structured neocortical memory systems.
Cortical surface-based analysis. I. Segmentation and surface reconstruction
- Neuroimage
, 1999
"... Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical pr ..."
Abstract
-
Cited by 450 (42 self)
- Add to MetaCart
Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging.
On Distinguishing Epistemic from Pragmatic Action
- Cognitive Science
, 1994
"... We present data and argument to show that in Tetris-a real-time, interactive video game-certain cognitive and perceptual problems ore more quicktv, easily, and reliably solved by performing actions in the world than by performing com-putational actions in the head atone. We have found that some of t ..."
Abstract
-
Cited by 341 (10 self)
- Add to MetaCart
We present data and argument to show that in Tetris-a real-time, interactive video game-certain cognitive and perceptual problems ore more quicktv, easily, and reliably solved by performing actions in the world than by performing com-putational actions in the head atone. We have found that some of the translations and rotations made by players of this video game are best understood as actions that use the world to improve cognition. These actions are not used to implement a plan, or to implement a reaction; they are used to change the world in order to simplify the problem-solving task. Thus, we distinguish pragmatic octions--actions performed to bring one physically closer to a goal-from epistemic actions-actions performed to uncover informatioan that is hidden or hard to compute mentally. To illustrate the need for epistemic actions, we first develop a standard information-processing model of Tetris cognition and show that it cannot explain performance data from human players of the game-even when we relax the assumption of fully sequential processing. Standard models disregard many actions taken by players because they appear unmotivated or superfluous. How-ever, we show that such actions are actually far from superfluous; they play a valuable role in improving human performance. We argue that traditional accounts are limited because they regard action as having o single function: to change the world. By recognizing a second function of action-an epistemic func-tion-we can explain many of the actions that a traditional model cannot. Al-though our argument is supported by numerous examples specifically from Tetris, we outline how the new category of epistemic action can be incorporated into theories of action more generally. In this article, we introduce the general idea of an epistemic action and discuss its role in Tetris, a real-time, interactive video game. Epistemic actions-physical actions that make mental computation easier, faster, or more We thank Steve Haehnichen for his work on the initial implementations of Tetris and
Hierarchical Bayesian Inference in the Visual Cortex
, 2002
"... this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the- ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 coul ..."
Abstract
-
Cited by 300 (2 self)
- Add to MetaCart
this paper, we propose a Bayesian theory of hierarchical cortical computation based both on (a) the mathematical and computational ideas of computer vision and pattern the- ory and on (b) recent neurophysiological experimental evidence. We ,2 have proposed that Grenander's pattern theory 3 could potentially model the brain as a generafive model in such a way that feedback serves to disambiguate and 'explain away' the earlier representa- tion. The Helmholtz machine 4, 5 was an excellent step towards approximating this proposal, with feedback implementing priors. Its development, however, was rather limited, dealing only with binary images. Moreover, its feedback mechanisms were engaged only during the learning of the feedforward connections but not during perceptual inference, though the Gibbs sampling process for inference can potentially be interpreted as top-down feedback disambiguating low level representations? Rao and Ballard's predictive coding/Kalman filter model 6 did integrate generafive feedback in the perceptual inference process, but it was primarily a linear model and thus severely limited in practical utility. The data-driven Markov Chain Monte Carlo approach of Zhu and colleagues 7, 8 might be the most successful recent application of this proposal in solving real and difficult computer vision problems using generafive models, though its connection to the visual cortex has not been explored. Here, we bring in a powerful and widely applicable paradigm from artificial intelligence and computer vision to propose some new ideas about the algorithms of visual cortical process- ing and the nature of representations in the visual cortex. We will review some of our and others' neurophysiological experimental data to lend support to these ideas
A theory of cortical responses
, 2005
"... This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. ..."
Abstract
-
Cited by 260 (30 self)
- Add to MetaCart
This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain’s free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain’s attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models
probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM
- P, MACDONALD D, IACOBONI M, SCHORMANN T, AMUNTS K, PALOMERO-GALLAGHER N, GEYER S, PARSONS L, NARR K, KABANI N, LE GOUALHER G, BOOMSMA D, CANNON T, KAWASHIMA R and MAZOYER B. A
, 2001
"... Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital ..."
Abstract
-
Cited by 208 (35 self)
- Add to MetaCart
Motivated by the vast amount of information that is rapidly accumulating about the human brain in digital
Human Brain Function
, 1997
"... Dynamic representations and generative models of ..."
Abstract
-
Cited by 192 (15 self)
- Add to MetaCart
(Show Context)
Dynamic representations and generative models of
The lateral occipital complex and its role in object recognition
, 2001
"... Here we review recent findings that reveal the functional properties of extra-striate regions in the human visual cortex that are involved in the representation and perception of objects. We characterize both the invariant and non-invariant properties of these regions and we discuss the correlation ..."
Abstract
-
Cited by 191 (4 self)
- Add to MetaCart
Here we review recent findings that reveal the functional properties of extra-striate regions in the human visual cortex that are involved in the representation and perception of objects. We characterize both the invariant and non-invariant properties of these regions and we discuss the correlation between activation of these regions and recognition. Overall, these results indicate that the lateral occipital complex plays an important role in human object recognition.